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Preface

These notes are largely based on Math 6730: Asymptotic and Perturbation Methods course,
taught by Paul Bressloff in Fall 2017, at the University of Utah. The main textbook is [Hol12],
but additional examples or remarks or results from other sources are added as we see fit, mainly
to facilitate our understanding. These notes are by no means accurate or applicable, and any
mistakes here are of course our own. Please report any typographical errors or mathematical
fallacy to us by email hkim@math.utah.edu or tan@math.utah.edu.
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Chapter 1

Introduction to Asymptotic
Approximation

Our main goal is to construct approximate solutions of differential equations to gain insight
of the problem, since they are nearly impossible to solve analytically in general due to the
nonlinear nature of the problem. Among the most important machinery in approximating
functions in some small neighbourhood is the Taylor’s theorem: Given f ∈ C(N+1)(Bδ(x0)),
for any x ∈ Bδ(x0) we can write f(x) as

f(x) =
N∑
k=0

f (k)(x0)

k!
(x− x0)k +RN+1(x),

where RN+1(x) is the remainder term

RN+1(x) =
f (N+1)(ξ)

(N + 1)!
(x− x0)N+1

and ξ is a point between x and x0. Taylor’s theorem can be used to solve the following problem:

Given a certain tolerance ε = |x− x0| > 0, how many terms should
we include in the Taylor polynomial to achieve that accuracy?

Asymptotic approximation concerns about a slightly different problem:

Given a fixed number of terms N , how accurate is
the asymptotic approximation as ε −→ 0?

We want to avoid from including as many terms as possible as ε −→ 0 and in contrast to
Taylor’s theorem, we do not care about convergence of the asymptotic approximation. In fact,
most asymptotic approximations diverge as N −→∞ for a fixed ε.

Remark 1.0.1. If the given function is sufficiently differentiable, then Taylor’s theorem offers
a reasonable approximation and we can easily analyse the error as well.

7
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1.1 Asymptotic Expansion

We begin the section with a motivating example. Suppose we want to evaluate the integral

f(ε) =

∫ ∞
0

e−t

1 + εt
dt, ε > 0.

We can develop an approximation of f(ε) for sufficiently small ε > 0 by repeatedly integrating
by parts. Indeed,

f(ε) = 1− ε
∫ ∞

0

e−t

(1 + εt)2
dt

= 1− ε+ 2ε2 − 6ε3 + · · ·+ (−1)NN !εN +RN(ε)

=
N∑
k=0

akε
k +RN(ε),

where

RN(ε) = (−1)N+1(N + 1)!εN+1

∫ ∞
0

e−t

(1 + εt)N+2
dt.

Since ∫ ∞
0

e−t

(1 + εt)N+2
dt ≤

∫ ∞
0

e−t dt = 1,

it follows that
|RN(ε)| ≤ |(N + 1)!εN+1|.

Thus, for fixed N > 0 we have that

lim
ε→0

∣∣∣∣∣f(ε)−
∑N

k=0 akε
k

εN

∣∣∣∣∣ = 0

or

f(ε) =
N∑
k=0

akε
k + o

(
εN
)

=
N∑
k=0

akε
k +O

(
εN+1

)
.

The formal series
N∑
k=0

akε
k is said to be an asymptotic expansion of f(ε) such that for fixed N ,

it provides a good approximation to f(ε) as ε −→ 0. However, this expansion is not convergent
for any fixed ε > 0, since

(−1)NN !εN −→∞ as ε −→ 0,

i.e. the correction term actually blows up!

Remark 1.1.1. Observe that for sufficiently small ε > 0,

|RN(ε)| � |(−1)NN !εN |,

which means that the remainder RN(ε) is dominated by the (N + 1)th term of the approxima-
tion, i.e. the error is of higher-order of the approximating function. This property is something
that we would want to impose on the asymptotic expansion, and this idea can be made precise
using the Landau symbols.
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1.1.1 Order symbols

Definition 1.1.2.

1. f(ε) = O(g(ε)) as ε −→ 0 means that there exists a finite M for which

|f(ε)| ≤M |g(ε)| as ε −→ 0.

2. f(ε) = o(g(ε)) as ε −→ 0 means that

lim
ε→0

∣∣∣∣f(ε)

g(ε)

∣∣∣∣ = 0.

3. The ordered sequence of functions {φk(ε)}∞k=0 is called an asymptotic sequence as
ε −→ 0 if and only if

φk+1(ε) = o(φk(ε)) as ε −→ 0 for each k.

4. Let f(ε) be a continuous function of ε and {φk(ε)}∞k=0 an asymptotic sequence. The
formal series expansion

N∑
k=0

akφk(ε)

is called an asymptotic expansion valid to order φN(ε) if for any N ≥ 0,

lim
ε→0

∣∣∣∣∣f(ε)−
∑N

k=0 akφk(ε)

φN(ε)

∣∣∣∣∣ = 0.

We typically writes f(ε) ∼
N∑
k=0

akφk(ε) as ε −→ 0.

Remark 1.1.3. Intuitively, an asymptotic expansion of a given function f is a finite sum
which might diverges, yet it still provides an increasingly accurate description of the asymptotic
behaviour of f as ε −→ 0. There is a caveat here: for a divergent asymptotic expansion, for
some ε, there exists an optimal N0 = N0(ε) that gives best approximation to f , i.e. adding
more terms actually gives worse accuracy. However, for values of ε sufficiently close to the
limiting value 0, the optimal number of terms required increases, i.e. for every ε1 > 0, there
exists an δ and an optimal N0 = N0(δ) such that∣∣∣∣∣f(ε)−

N∑
k=0

akφk(ε)

∣∣∣∣∣ < ε1 for every |z − z0| < δ and N > N0.

Sometimes in approximating general solutions of ODEs, we will need to consider time-
dependent asymptotic expansions. Suppose ẋ = f(x, ε), x ∈ Rn. We seek a solution of the
form

x(t, ε) ∼
N∑
k=0

ak(t)φk(ε) as ε −→ 0,
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which will tend to be valid over some range of times t. It is often useful to characterise the
time interval over which the asymptotic expansion exists. We say that this estimate is valid
on a time-scale 1/δ̂(ε) if

lim
ε→0

∣∣∣∣∣x(t, ε)−
∑N

k=0 ak(t)φk(ε)

φN(ε)

∣∣∣∣∣ = 0 for 0 ≤ δ̂(ε)t ≤ C,

for some C independent of ε.

1.1.2 Accuracy vs convergence

In the case of a Taylor series expansion, one can increase the accuracy (for fixed ε) by including
more terms in the approximation, assuming we are expanding within the radius of convergence.
This is not usually the case for an asymptotic expansion because the asymptotic expansion
concerns the limit as ε −→ 0 whereas increasing the number of terms concerns N −→ ∞ for
fixed ε.

1.1.3 Manipulating asymptotic expansions

Two asymptotic expansions can be added together term by term, assuming both involve the
same basis functions {φk(ε)}. Multiplication can also be carried out provided the asymptotic
sequence {φk(ε)} can be ordered in a particular way. What about differentiation? Suppose

f(x, ε) ∼ φ1(x, ε) + φ2(x, ε) as ε −→ 0.

It is not necessarily the case that

d

dx
f(x, ε) ∼ d

dx
φ1(x, ε) +

d

dx
φ2(x, ε) as ε −→ 0.

There are two possible scenarios:

Example 1.1.4. Consider f(x, ε) = e−x/ε sin
(
ex/ε
)
. Observe that for x > 0 we have that

lim
ε→0

∣∣∣∣f(x, ε)

εn

∣∣∣∣ = 0 for all finite n,

which means that

f(x, ε) ∼ 0 + 0 · ε+ 0 · ε2 + . . . as ε −→ 0.

However,
d

dx
f(x, ε) = −1

ε
e−x/ε sin

(
ex/ε
)

+
1

ε
cos
(
ex/ε
)
−→∞ as ε −→ 0.

i.e. the derivative cannot be expanded using the asymptotic sequence {1, ε, ε2, . . .}.
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Example 1.1.5. Even if {φk(ε)} is an ordered asymptotic sequence, its derivative {φ′k(ε)}
need not be. Consider φ1(x) = 1 + x, φ2(x) = ε sin(x/ε) for x ∈ (0, 1). Then φ2 = o(φ1) but

φ′1(x) = 1, φ′2(x) = cos(x/ε),

which are not ordered!

On the bright side, if

f(x, ε) ∼ a1(x)φ1(ε) + a2(x)φ2(ε) as ε −→ 0, (1.1.1)

and if

d

dx
f(x, ε) ∼ b1(x)φ1(ε) + b2(x)φ2(ε) as ε −→ 0, (1.1.2)

then bk =
dak
dx

, i.e. the asymptotic expansion for
df

dx
can be obtained from term by term

differentiation of (1.1.1). Throughout this course, we will assume that (??) holds whenever
we are given (1.1.1) which almost holds in practice. Integration, on the other hand, is less
problematic. If

f(x, ε) ∼ a1(x)φ1(ε) + a2(x)φ2(ε) as ε −→ 0 for x ∈ [a, b],

and all the functions are integrable, then∫ b

a

f(x, ε) dx ∼
(∫ b

a

a1(x) dx

)
φ1(ε) +

(∫ b

a

a2(x) dx

)
φ2(ε) as ε −→ 0.

1.2 Algebraic and Transcendental Equations

We study three examples where approximate solutions are found using asymptotic expansions,
but each uses different method. They serve to illustrate the important point that instead of
performing the routine procedure with standard asymptotic sequence, we should taylor our
asymptotic expansion to extract the physical property or behavior of our problem.

1.2.1 Singular quadratic equation

Consider the quadratic equation
εx2 + 2x− 1 = 0. (1.2.1)

This is known as a singular problem since the order of the polynomial (and thus the nature
of the equation) changes when ε = 0; in this case the unique solution is x = 1/2. It is evident
from Figure 1.1 that there are two real roots for sufficiently small ε; one is located slightly to
the left of x = 1/2 and one far left on the x-axis. This means that the asymptotic expansion
should not start out as

x(ε) ∼ εx0 + . . . ,
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because then x(ε) −→ 0 as ε −→ 0. Therefore, we try the asymptotic expansion

x(ε) ∼ x0 + εαx1 + . . . as ε −→ 0, (1.2.2)

for some α > 0. Substituting (1.2.2) into (1.2.1) leads to

ε
[
x2

0 + 2εαx0x1 + . . .
]︸ ︷︷ ︸

1

+ 2 [x0 + εαx1 + . . . ]︸ ︷︷ ︸
2

−1 = 0. (1.2.3)

(1/2,0)
x

y y = 1− 2x

y = εx2

Figure 1.1: Graphs of y = 1− 2x and y = εx2.

Requiring (1.2.3) to hold as ε −→ 0 results in the O(1) equation

2x0 − 1 = 0 =⇒ x0 =
1

2
.

Since the right-hand side is zero, the O(ε) in 1 must be balanced by the O(εα) term in 2 .
This means that we must choose α = 1 and the O(ε) equation is

x2
0 + 2x1 = 0 =⇒ x1 = −1

8
.

Consequently, a two-term expansion of one of the roots is

x(1)(ε) ∼ 1

2
− ε

8
+ . . . as ε −→ 0.

The chosen ansatz (1.2.2) produce an approximation for the root near x = 1/2 and we missed
the other root because it approaches negative infinity as ε −→ 0. One possible method to
generate the other root is to consider solving

ε(x− x1)(x− x2) = 0,

but a more systematic method which is applicable to ODEs is to avoid the O(1) solution. Take

x ∼ εγ (x0 + εαx1 + . . . ) as ε −→ 0, (1.2.4)
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for some α > 0. Substituting (1.2.4) into (1.2.1) gives

ε(1+2γ)
[
x2

0 + 2εαx0x1 + . . .
]︸ ︷︷ ︸

1

+ 2εγ [x0 + εαx1 + . . . ]︸ ︷︷ ︸
2

− 1︸︷︷︸
3

= 0. (1.2.5)

The terms on the LHS must balance to produce zero, and we need to determine the order of
the problem that comes from this balancing. There are 3 possibilities on leading-order:

1. Set γ = 0 and we recover the root x(1)(ε) on balancing 2 and 3 .

2. Balance 1 and 3 , and so 2 is higher-order. The condition 1 ∼ 3 requires

1 + 2γ = 0 =⇒ γ = −1

2
,

so that the leading-order term in 1 , 3 are of O(1), whilst 2 = O(ε−1/2) which is lower

order that 1 . This is not possible.

3. Balance 1 and 2 , and so 3 is higher-order. The condition 1 ∼ 2 requires

1 + 2γ = γ =⇒ γ = −1,

so that the leading-order term in 1 , 2 are of O(ε−1) and 3 = O(1). This is consistent
with the assumption!

Setting γ = −1 in (1.2.5) and multiplying by ε result in(
x2

0 + 2εαx0x1 + . . . . . .
)

+ 2 (x0 + εαx1 + . . . . . .)− ε = 0. (1.2.6)

The O(1) equation is

x2
0 + 2x0 = 0 =⇒ x0 = 0 or x0 = −2.

The solution x0 = 0 gives rise to the root x(1)(ε) by choosing α = 1, so the new root is obtained
by taking x0 = −2. Balancing the equation as before means we must choose α = 1 and the
O(ε) equation is

2x0x1 + 2x1 − 1 = 0 =⇒ x1 = −1

2
.

Hence, a two-term expansion of the second root of (1.2.2) is

x(2)(ε) ∼ 1

ε

(
−2− ε

2

)
as ε −→ 0.

Remark 1.2.1. We may choose x0 = 1/2 in (1.2.2) since one of the root should be close to
x = 1/2 as we “switch on” ε in the term εx2.



14 1.2. Algebraic and Transcendental Equations

1.2.2 Exponential equation

Unlike algebraic equations, it is harder to determine the number of solutions of transcendental
equations in most cases and we must resort to graphical method. Consider the equation

x2 + eεx = 5 (1.2.7)

From Figure 1.2, we see that there are two real solutions nearby x = ±2. We assume an
asymptotic expansion of the form

x(ε) ∼ x0 + εαx1 + . . . as ε −→ 0, (1.2.8)

for some α > 0. Substituting (1.2.8) into (1.2.7) and expanding the exponential term eεx

around x = 0 we obtain [
x2

0 + 2εαx0x1 + . . .
]︸ ︷︷ ︸

1

+ [1 + εx0 + . . . ]︸ ︷︷ ︸
2

= 5︸︷︷︸
3

. (1.2.9)

The O(1) equation is

x2
0 + 1 = 5 =⇒ x0 = ±2.

Balancing the O(εα) term in 1 and the O(ε) term in 2 gives α = 1 and the O(ε) equation
is

2x0x1 + x0 = 0 =⇒ x1 = −1

2
.

Hence, a two-term asymptotic expansion of each solution is

x(ε) ∼ ±2− ε

2
as ε −→ 0.

(-
√

5,0) (
√

5,0)
x

y y = 5− x2

y = eεx

Figure 1.2: Graphs of y = 5− x2 and y = eεx.
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1.2.3 Trigonometric equation

Consider the equation

x+ 1 + ε sech
(x
ε

)
= 0. (1.2.10)

It appears from Figure 1.3 that there exists a real solution and it approaches x = −1 as ε −→ 0.
If we naively try

x ∼ x0 + εαx1 + . . . as ε −→ 0,

we obtain

[x0 + εαx1 + . . .] + 1 + ε sech

(
x0 + εαx1 + . . .

ε

)
= 0

and it follows that x0 = −1 since sech(x) ∈ (0, 1] for any x ∈ R. However, we cannot balance
subsequent leading-order terms since it is not possible to find α due to the nature of sech(x).
From the definition of asymptotic sequences, we assume an asymptotic expansion of the form

x(ε) ∼ x0 + µ(ε) as ε −→ 0, (1.2.11)

where we impose the condition µ(ε) � 1 when ε � 1. Substituting (1.2.11) into (1.2.10) we
obtain

[x0 + µ(ε)] + 1 + ε sech

[
x0

ε
+
µ(ε)

ε

]
= 0. (1.2.12)

The O(1) equation remains x0 = −1 and (1.2.12) reduces to

µ(ε) + ε sech

[
x0

ε
+
µ(ε)

ε

]
= 0.

Since

sech

(
x0

ε
+
µ(ε)

ε

)
∼ sech

[
−1

ε

]
=

2

e1/ε + e−1/ε
∼ 2e−1/ε,

we require
µ(ε) = −2εe−1/ε = o(1) as ε −→ 0.

To construct the third term in the expansion, we would extend (1.2.11) into

x ∼ −1− 2εe−1/ε + ν(ε),

where we impose the condition ν(ε)� εe−1/ε.

(-1,0)

(0,ε)

x

y y = −x− 1
y = ε sech(x/ε)

Figure 1.3: Graphs of y = −x− 1 and y = ε sech(x/ε).
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1.3 Differential Equations: Regular Perturbation The-

ory

Roughly speaking, regular perturbation theory is a variant of Taylor’s theorem, in the sense
that we seek power series solution in ε. More precisely, we assume that the solution takes the
form

x ∼ x0 + εx1 + ε2x2 + . . . as ε −→ 0,

where x0 is the zeroth-order solution, i.e. the solution for the case ε = 0.

1.3.1 Projectile motion

Consider the motion of a gerbil projected radially upward from the surface of the Earth. Let
x(t) be the height of the gerbil from the surface of the Earth. Newton’s law of motion asserts
that

d2x

dt2
= − gR2

(x+R)2
, (1.3.1)

where R is the radius of the Earth and g is the gravitational constant. If x � R, then to a
first approximation we obtain the initial value problem

d2x

dt2
≈ −gR

2

R2
= −g, x(0) = 0, x′(0) = v0, (1.3.2)

where v0 is some initial velocity. The solution is

x(t) = −gt
2

2
+ v0t. (1.3.3)

(
2v0
g
, 0
)

(
v0
g
,
v20
2g

)

t

x(t)

Figure 1.4: Graph of x(t) versus t of the first approximation problem (1.3.2).

Unfortunately, this simplification does not determine a correction to the approximate solu-
tion (1.3.3). To this end, we nondimensionalise (1.3.1) with dimensionless variables

τ =
t

tc
, y =

x

xc
,
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where tc = v0/g and xc = v2
0/g are the chosen characteristic time and length scales respectively.

This results in the dimensionless initial-value problem

d2y

dτ 2
= − 1

(1 + εy)2
, y(0) = 0, y′(0) = 1. (1.3.4)

Observe that the dimensionless parameter ε =
xc
R

=
v2

0

gR
measures how high the projectile gets

in comparison to the radius of the Earth. Consider an asymptotic expansion

y(τ) ∼ y0(τ) + εαy1(τ) + . . . as ε −→ 0. (1.3.5)

where the exponent α > 0 is included since a-priori there is no reason to assume α = 1.
Assuming we can differentiate (1.3.5) term by term, we obtain using generalised Binomial
theorem [

y′′0 + εαy′′1 + . . .
]

= − 1

[1 + εy0 + . . . ]2
∼ −1 + 2εy0 + . . . ,

with
y0(0) + εαy1(0) + · · · = 0, y′0(0) + εαy′1(0) + · · · = 1.

The O(1) problem is

y′′0 = −1, y0(0) = 0, y′0(0) = 1 =⇒ y0(τ) = −τ
2

2
+ τ,

and we must choose α = 1 to balance the term 2εy0. Consequently, the O(ε) problem is

y′′1 = 2y0, y1(0) = 0, y′1(0) = 0 =⇒ y1(τ) =
τ 3

3
− τ 4

12
.

Hence, a two-term asymptotic expansion of the solution of (1.3.4) is

y(τ) ∼ τ

(
1− 1

2
τ

)
+

1

3
ετ 3
(

1− τ

4

)
.

Note that the O(1) term is the scaled solution of (1.3.1) in a uniform gravitational field and
the O(ε) term (first-order correction) contains the nonlinear effect of the problem.

1.3.2 Nonlinear potential problem

An interesting physical problem is the model of the diffusion of ions through a solution contain-
ing charged molecules. Assuming the solution occupies a domain Ω, the electrostatic potential
φ(x) in the solution satisfies the Poisson-Boltzmann equation

∇2φ = −
k∑
i=1

αizie
−ziφ, x ∈ Ω, (1.3.6)

where the αi are positive constants and zi is the valence of the ith ionic species. The whole
system must be neutral and this gives the electroneutrality condition

k∑
i=1

αizi = 0. (1.3.7)
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We impose the Neumann boundary condition in which we assume the charge is uniform on the
boundary:

∇φ · n = ∂nφ = ε on ∂Ω, (1.3.8)

where n is the unit outward normal to ∂Ω.
This nonlinear problem has no known solutions. To deal with this, we invoke the classical

Debye-Hückle theory in electrochemistry which assumes that the potential is small enough
so that the Poisson-Boltzmann equation can be linearised. Because of the boundary condition
(1.3.8), we may assume the zeroth-order solution is 0 and guess an asymptotic expansion of
the form

φ ∼ ε (φ0(x) + εφ1(x) + . . . ) as ε −→ 0, (1.3.9)

where a small potential means ε is small. Substituting (1.3.9) into (1.3.6) and expanding the
exponential function around the point 0 yields

ε
(
∇2φ0 + ε∇2φ+ . . .

)
= −

k∑
i=1

αizie
−εzi(φ0+εφ1+... )

= −
k∑
i=1

αizi

[
1− εzi (φ0 + εφ1 + . . . ) +

1

2
ε2z2

i (φ0 + εφ1 + . . . )2 + . . .

]

= −
k∑
i=1

αizi

[
1− εziφ0 + ε2

(
−ziφ1 +

1

2
z2
i φ

2
0

)
+ . . .

]

∼ ε

(
k∑
i=1

αiz
2
i φ0

)
+ ε2

(
k∑
i=1

αiz
2
i

(
φ1 −

1

2
ziφ

2
0

))
.

Setting κ2 =
k∑
i=1

αiz
2
i , the O(ε) equation is

∇2φ0 = κ2φ0 in Ω, (1.3.10a)

∂nφ0 = 1 on ∂Ω. (1.3.10b)

Setting λ =
1

2

k∑
i=1

αiz
3
i , the O(ε2) equation is

(
∇2 − κ2

)
φ1 = −λφ2

0 in Ω, (1.3.11a)

∂nφ1 = 0 on ∂Ω. (1.3.11b)

Take Ω to be the region outside the unit sphere, which is radially symmetric. Writing the
Laplacian operator ∇2 in terms of spherical coordinates, the solution must be independent of
the angular variables since the boundary condition is independent of the angular variables.
With φ0 = φ0(r), the O(ε) equation now has the form

1

r2

d

dr

(
r2dφ0

dr

)
− κ2φ0 = 0 for 1 < r <∞, (1.3.12a)

φ′0(1) = −1, (1.3.12b)
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where the negative sign is due to n = −r̂. The bounded solution of (1.3.12) is

φ0(r) =
1

(1 + κ)r
eκ(1−r),

where the exponential term is the screening term. With φ1 = φ1(r), the O(ε2) equation takes
the form

1

r2

d

dr

(
r2dφ0

dr

)
− κ2φ1 = − λ

(1 + κ)2r2
e2κ(1−r) for 1 < r <∞, (1.3.13a)

φ′1(1) = 0. (1.3.13b)

Using the method of variation of parameters, the solution of (1.3.13) is

φ1(r) =
α

r
e−κr +

γ

κr

[
eκrE1(3κr)− e−κrE1(κr)

]
γ =

λe2κ

2κ(1 + κ)2

α =
γ

κ(1 + κ)

[
(κ− 1)e2κE1(3κ) + (κ+ 1)E1(κ)

]
E1(z) =

∫ ∞
z

e−t

t
dt.

1.3.3 Fredholm alternative

Let L0 and L1 be linear differential or integral operatots on the Hilbert space L2(R) with the
standard inner product

〈f, g〉 =

∫ ∞
−∞

f(x)g(x) dx.

Consider the perturbed eigenvalue problem

(L0 + εL1)φ = λφ. (1.3.14)

Spectral problems are widely studied in the context of time-dependence PDEs when time-
harmonic solutions are sought for instance, and we are interested in the behaviour of the
spectrum of L0 as we perturb L0. Suppose further that for ε = 0, the unperturbed equation
has a unique solution (λ0, φ0) with λ0 non-degenerate. For simplicity, take L0 to be self-adjoint,
that is

〈f, L0g〉 = 〈L0f, g〉.
Since L0, L1 are linear, we introduce the asymptotic expansions for both the eigenfunction

φ and eigenvalue λ with asymptotic sequence {1, ε, ε2, . . . }

φ ∼ φ0 + εφ1 + ε2φ2 + . . .

λ ∼ λ0 + ελ1 + ε2λ2 + . . . .

We obtain

(L0 + εL1)
[
φ0 + εφ1 + ε2φ2 + . . .

]
=
[
λ0 + ελ1 + ε2λ2 + . . .

] [
φ0 + εφ1 + ε2φ2 + . . .

]
.
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The O(1) equation is L0φ0 = λ0φ0 and the O(ε) equation is

L0φ1 + L1φ0 = λ0φ1 + λ1φ0

(L0 − λ0I)φ1 = λ1φ0 − L1φ0.

It follows from the Fredholm alternative that a necessary condition for the existence of φ1 ∈
L2(R) is that

(λ1φ0 − L1φ0) ∈ ker((L0 − λ0I)∗)⊥ = ker(L0 − λ0I)⊥,

and this in turn provides the solvability condition for λ1. Since ker(L0 − λ0I) = span(φ0) and
L0 is self-adjoint,

0 = 〈φ0, (L0 − λ0I)φ1〉 = λ1〈φ0, φ0〉 − 〈φ0, L1φ0〉

λ1 =
〈φ0, L1φ0〉
〈φ0, φ0〉

.

This expression of λ1 represents the first-order correction to the eigenvalue of the operator
(L0 + εL1). The O(εn) equation can be analysed in a similar manner, where λn can be found
using the solvability condition from the Fredholm alternative, assuming {λ0, λ1, . . . , λn−1} are
non-degenerate.

1.4 Problems

1. Consider the transcendental equation

1 +
√
x2 + ε = ex. (1.4.1)

Explain why there is only one small root for small ε. Find the three term expansion of
the root

x ∼ x0 + x1ε
α + x2ε

β, β > α > 0.

Solution: Consider two graph f(x) =
√
x2 + ε and g(x) = ex − 1. If x < 0, then

f(x) > 0 > g(x). It means that there is no solution in negative region. If x > 0, then
f(x) → x as x → ∞ starting its curve from f(0) = ε. One can draw graph of f(x)
and g(x) on x > 0, then it yields there is only one solution.

To obtain first expansion, set ε = 0. Then we get

1 + x = ex =⇒ x = 0.

Since there is only on solution for all ε > 0, then one can set x0 = 0 and expand x
further at this point. To do so, rewrite the equation (1.4.1) as

x2 + ε = (ex − 1)2

and x� 1 as ε� 1, it is reasonable to expand RHS as Taylor series. Then one can
obtain

x2 + ε =

(
x+

1

2!
x2 +

1

3!
x3 + · · ·

)2

= x2 + x3 +
7

12
x4 + · · · . (1.4.2)
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Before we balance both sides, consider the leading-order of both sides. Without
doubt, the leading-order is ε2α with coefficient x2

1. For LHS, we have three cases

(a) If 2α > 1, then the leading-order is ε with coefficient 1. It leads to a contradic-
tion when balancing both sides because 2α = 1. (×)

(b) If 2α = 1, the balancing equation yields x2
1 + 1 = x2

1 and it does not make sense.
(×)

(c) Thus, the only case is 2α < 1.

Then one can rewrite equation (1.4.2) as

ε = x3 +
7

12
x4 + · · · = (x3

1ε
3α + 3x2

1x2ε
2α+β + · · · ) +

7

12
(x4

1ε
4α + · · · ).

Since the leading-order of RHS is ε3α, it provides that 1 = 3α and 1 = x3
1. Thus,

α = 1/3 and x1 = 1. The next leading term is ε4α. Since there is no remaining term
on LHS, then balance RHS as

2α + β = 4α and 0 = 3x2
1x2 +

7

12
x4

1,

yields β = 2α = 2/3 and x2 = −7/36. Therefore, the three term expansion of root is

x ∼ 0 + ε1/3 − 7

36
ε2/3. (1.4.3)

2. A classical eigenvalue problem is the transcendental equation

λ = tan(λ).

(a) After sketching the two functions in the equation, establish that there is an infinite
number of solutions, and for sufficiently large λ takes the form

λ = πn+
π

2
− xn,

with xn small.

Solution: Tangent is π-periodic function with asymptotic line λn = πn+ π/2.
tan(λ)→∞ as λ→ λ+

n . Since f(λ) = λ passes through all the asymptotic line
and tangent function is close to the asymptotic line, then for sufficiently large
n, λ takes the form

λ = λn − xn
where xn is a small number and tends to zero as n→∞.

(b) Find an asymptotic expansion of the large solutions of the form

λ ∼ ε−α
(
λ0 + εβλ1

)
,

and determine ε, α, β, λ0, λ1.
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Solution:Set λ = 1/ε and see the asymptotic behavior of xn. Then one can
figure out an asymptotic expansion of λ. For convenience, set xn = x. Then
one can get

1

ε
− x = tan

(
1

ε
− x
)

= cot(x)

because tan(1/ε) = 0. By multiplying ε tan(x) on both sides and we get

tan(x)− εx tan(x) = ε.

Sicne we know that x→ 0 as ε→ 0, take x ∼ x0ε
θ, θ > 0. It follows that

(x0ε
θ + · · · )− ε(x0ε

θ + · · · )(x0ε
θ + · · · ) = ε

Since θ > 0, the leading-order of LHS is εθ. To balance both sides with O(ε),
set θ = 1 and get x0 = 1. Therefore, an asymptotic expansion of λ is

λ =
1

ε
− x ∼ 1

ε
− ε = ε−1(1 + ε2(−1)).

It follows that α = −1, β = 2, λ0 = 1 and λ1 = −1.

3. In the study of porous media one is interested in determining the permeability k(s) =
F ′(c(s)), where ∫ 1

0

F−1(c− εr) dr = s

F−1(c)− F−1(c− ε) = β,

and β is a given positive constant. The functions F (c) and c both depend on ε, whereas
s and β are independent of ε. Find the first term in the expansion of the permeability
for small ε. Hint: consider an asymptotic expansion of c and use the fact that s is
independent of ε.

Solution: Take c ∼ c0 + c1ε + · · · . Substituting it into given integral equation and
expanding F−1 as Taylor series centered at c = c0 yields∫ 1

0

F−1(c0) + ε(c1 − r)
dF−1

dc
(c0) +O(ε2)dr

= F−1(c0) + ε

(
c1 −

1

2

)
dF−1

dc
(c0) +O(ε2) = s.

Since s is independent of ε, then it gives us that

F−1(c0) = s and c0 −
1

2
= 0 =⇒ c0 = F (s) and c1 =

1

2
.
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From the second condition, expanding F−1 as Taylor series follows provides that

F−1(c0) + εc1
dF−1

dc
(c0)− F−1(c0)− ε(c1 − 1)

dF−1

dc
(c0) +O(ε2) = β.

It follows that

ε
1

F ′(s)
+O(ε2) = β =⇒ k(s) = F ′(s) ∼ ε

β
.

4. Let A and D be real n× n matrices.

(a) Suppose A is symmetric and has n distinct eigenvalues. Find a two-term expansion
of the eigenvalues of the perturbed matrix A+ εD, where D is positive definite.

Solution: We assume the asymptotic expansions of the eigenpairs (λ, x):

λ ∼ λ0 + ελ1 + ε2λ2 + . . .

x ∼ x0 + εx1 + ε2x2 + . . . .

Substituting these into the eigenvalue equation (A+ εD)x = λx yields

(A+ εD) (x0 + εx1 + . . . ) = (λ0 + ελ1 + . . . ) (x0 + εx1 + . . . ) .

The O(1) equation is Ax0 = λ0x0 which means that (λ0, x0) is the eigenpair of
the matrix A. The O(ε) equation is

Ax1 +Dx0 = λ0x1 + λ1x0,

or
Lx1 = (A− λ0I)x1 = λ1x0 −Dx0.

It follows from the Fredholm Alternative that the solvability condition for λ1 is

λ1 ∈ ker(LT )⊥ = ker(L)⊥ = span(x0).

Consequently,

0 = xT0Lx1 = xT0 (λ1x0 −Dx0) =⇒ λ1 =
xT0Dx0

xT0 x0

.

(b) Consider the matrices

A =

[
0 1
0 0

]
, D =

[
0 0
1 0

]
.

Use this example to show that the O(ε) perturbation of a matrix need not result
in a O(ε) perturbation of the eigenvalues, nor that the perturbation is smooth (at
ε = 0).
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Solution: The perturbed matrix A + εD =

[
0 1
ε 0

]
has eigenvalues λ = ±

√
ε,

which is not of O(ε) and is not differentiable at ε = 0.

5. The eigenvalue problem for the vertical displacement y(x) of an elastic string with variable
density is

y′′ + λ2ρ(x, ε)y = 0, 0 < x < 1,

where y(0) = y(1) = 0. For small ε, assume ρ ∼ 1 + εµ(x), where µ(x) is positive and
continuous. Consider the asymptotic expansions

y ∼ y0(x) + εy1(x), λ ∼ λ0 + ελ1.

(a) Find y0, λ0 and λ1. (The latter will involve an integral expression.)

Solution: Substituting the given asymptotic expansions together with the ap-
proximation ρ ∼ 1 + εµ(x) gives

[y′′0 + εy′′1 + . . . ] + [λ0 + ελ1 + . . . ]2 [1 + εµ(x)] [y0 + εy1 + . . . ] = 0.

The O(1) equation is

y′′0 + λ2y0 = 0, y0(0) = y0(1) = 0,

and this boundary value problem has solutions

y0,n(x) = A sin(λ0,nx) = A sin(nπx), n ∈ Z.

The O(ε) equation is

y′′1 + λ2
0y1 + λ2

0µ(x)y0 + 2λ0λ1y0 = 0, y1(0) = y1(1) = 0.

Using integration by parts, one can show that the linear operator L =
d2

dx2
+ λ2

0

with domain
D(L) =

{
f ∈ C2[0, 1] : f(0) = f(1) = 0

}
,

is self-adjoint with respect to the L2 inner product over [0, 1]. Moreover, for a
fixed λ0 it has a one-dimensional kernel ker(L) = span(sin(λ0x)). We can now
determine λ1 using Fredholm alternative, this results in

0 = 〈y0, λ
2µ(x)y0〉+ 〈y0, 2λ0λ1y0〉

λ1 = −λ
2
0〈y0, µ(x)y0〉
2λ0〈y0, y0〉

= −λ0

∫ 1

0

µ(x) sin2(nπx) dx,
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since

〈y0, y0〉 =

∫ 1

0

A2 sin2(nπx) dx = A2

∫ 1

0

1− cos(2nπx)

2
dx =

A2

2
.

(b) Using the equation for y1, explain why the asymptotic expansion can break down
when λ0 is large.

Solution: From the previous results, one can find the equation for y1 as

y′′1(x) + λ2
0y1(x) = λ2

0

(
−µ(x)y0(x) + 2

∫ 1

0

µ(s)y2
0(s)ds

)
.

Notice that the RHS proportional to λ2
0 and it follows that the particular solution

of y1 is proportional to λ2
0, then it implies that y1 → ∞. This can break down

the expansion mixed with ε.

6. Consider the following eigenvalue problem:∫ a

0

K(x, s)y(s) ds = λy(x), 0 < x < a.

This is a Fredholm integral equation, where the kernel K(x, d) is known and is assumed
to be smooth and positive. The eigenfunction y(x) is taken to be positive and normalized
so that ∫ a

0

y2(s) ds = a.

Both y(x) and λ depend on the parameter a, which is assumed to be small.

(a) Find the first two terms in the expansion of λ and y(x) for small a.

Solution: Since the LHS of Fredholm integral equation is proportional to a,
because integral contains a, the leading-order of eigenvalue λ is O(a). So, take

λ ∼ λ0a+ λ1a
2 and y(x) ∼ y0(x) + y1(x)a.

Expand K(x, s) and y(s) as Taylor series in terms of s centered at s = 0 because
0 < s < a is also small. Then we get∫ a

0

(K(x, 0) +Kd(x, 0)s+ · · · )(y(0) + y′(0)s+ · · · )ds = λy(x),

and it follows that

aK(x, 0)y(0) +
a2

2
(K(x, 0)y′(0) +Kd(x, 0)y(0)) + · · · = λy(x).

Balance O(a) terms and one can obtain

K(x, 0)y0(0) = λ0y0(x). (1.4.4)
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Balance O(a2) terms and one can find

K(x, 0)y1(0) +
1

2
(K(x, 0)y′0(0) +Kd(x, 0)y0(0)) = λ1y0(x) + λ0y1(x). (1.4.5)

In the same fashion, find one more asymptotic equation from given normalization
equation ∫ a

0

(y(0) + y′(0)s+ · · · )2ds = a

and it follows that

a · (y(0))2 +
a2

2
· 2y(0)y′(0) + · · · = a.

Balance O(a) terms and one can obtain

(y0(0))2 = 1. (1.4.6)

Balance O(a2) terms and one can find

2y0(0)y1(0) +
1

2
· 2y0(0)y′0(0) = 0. (1.4.7)

From equation (1.4.4,1.4.6), one can find

y0(0) = 1 and λ0 = K(0, 0).

This implies that

y0(x) =
K(x, 0)

K(0, 0)
.

Similarly, one can find

λ1 =
1

2
(K(0, 0)y′0(0) +Kd(0, 0)) =

1

2
(Kx(0, 0) +Kd(0, 0))

and

y1(x) =
1

λ0

[
K(x, 0)y1(0) +

1

2

(
K(x, 0)Kx(x, 0)

K(0, 0)
+Kd(x, 0)

)
− λ1y0(x)

]
,

and it follow that

y1(x) =
1

2λ0

[
−K(x, 0)

K(0, 0)
[Kx(x, 0)−Kx(0, 0)] +Kd(x, 0)− 2λ1y0(x)

]
.

(b) By changing variables, transform the integral equation into∫ 1

0

K(aξ, ar)φ(r) dr =
λ

a
φ(ξ), 0 < ξ < 1.

Write down the normalisation condition for φ.
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Solution: Substituting x = aξ and s = ar into the Fredholm integral equation
yields ∫ 1

0

K(aξ, ar)y(ar)adr = λy(ar),

and set φ(r) = y(ar). It follows that∫ 1

0

K(aξ, ar)φ(r)dr =
λ

a
φ(r).

In the same fashion, consider the normalization equation∫ a

0

y2(s)ds = a =⇒
∫ 1

0

φ2(r)adr = a =⇒
∫ 1

0

φ2(r)dr = 1.

(c) From part (b) find the two-term expansion for λ and φ(ξ) for small a.

Solution: Take λ ∼ aλ0 + a2λ1 and φ ∼ φ0 + aφ1. In the same fashion we did
in part (a), expand K inside of integral centered at zero∫ 1

0

(K(0, 0) +Kx(0, 0)aξ +Kd(0, 0)ar + · · · )φ(r)dr =

K(0, 0)

∫ 1

0

φ(r)dr + aξKx(0, 0)

∫ 1

0

φ(r)dr+

aKd(0, 0)

∫ 1

0

rφ(r)dr + · · · .

Then balance O(1) terms in both sides of the equations and we get{
K(0, 0)

∫ 1

0
φ0(r)dr = λ0φ0(ξ)∫ 1

0
(φ0(r))2dr = 1

.

It implies that φ0 is constant, and it yields that

φ0(ξ) = 1 and λ0 = K(0, 0). (1.4.8)

Similarly, balance O(a) terms of the equations and one can obtain
K(0, 0)

∫ 1

0
φ1(r)dr + ξKx(0, 0)

∫ 1

0
φ0(r)dr +Kd(0, 0)

∫ 1

0
rφ0(r)dr

= λ0φ1(ξ) + λ1φ0(ξ)∫ 1

0
φ0(r)φ1(r)dr = 0

It follows that
∫ 1

0
φ1(r)dr = 0 and one can have

ξKx(0, 0) +
1

2
Kd(0, 0) = λ0φ1(ξ) + λ1.
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Integrate both side with respect to ξ on [0, 1] and get

λ1 =
1

2
Kx(0, 0) +

1

2
Kd(0, 0). (1.4.9)

This eigenvalue yields that

φ1(ξ) =
Kx(0, 0)

λ0

(
ξ − 1

2

)
. (1.4.10)

(d) Explain why the expansions in parts (a) and (c) are the same for λ but not the
eigenfunction.

Solution: The eigenvalue is coordinate invariant, so it is not affected by change
of variables. However, the eigenfunctions are.

7. In quantum mechanics, the perturbation theory for bound states involves the time-
independent Schrodinger equation

ψ′′ − [V0(x) + εV1(x)]ψ = −Eψ, −∞ < x <∞,

where ψ(−∞) = ψ(∞) = 0. In this problem, the eigenvalue E represents energy and V1

is a perturbing potential. Assume that the unperturbed (ε = 0) eigenvalue is nonzero
and nondegenerate.

(a) Assuming

ψ(x) ∼ ψ0(x) + εψ1(x) + ε2ψ2(x), E ∼ E0 + εE1 + ε2E2,

write down the equation for ψ0(x) and E0. We will assume in the following that∫ ∞
−∞

ψ2
0(x) dx = 1,

∫ ∞
−∞
|V1(x)| dx <∞.

Solution: Substituting expansion of ψ and E into the Schrodinger equation,
one can balance O(1) terms and get

ψ′′0(x)− V0(x)ψ0(x) = −Eψ0(x).

(b) Substituting ψ(x) = eφ(x) into the Schrodinger equation and derive the equation for
φ(x).

Solution: Take derivative twice to ψ and it yields that

ψ′(x) = φ′(x)eφ(x) and ψ′′(x) = (φ′′(x) + (φ′(x))2)eφ(x).

Plug them into the Schrodinger equation and drop common term eφ(x). Then it
follows that

φ′′(x) + (φ′(x))2 − (V0(x) + εV1(x)) = −E.
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(c) By expanding φ(x) for small ε, determine E1 and E2 in terms of ψ0 and V1.

Solution: Assume that φ(x) ∼ φ0(x) + εφ1(x) + ε2φ2(x). Substituting it into
the new Schrodinger equation and balance O(ε) terms. Then one can obtain

φ′′1 + 2φ′0φ
′
1 = V1 − E1.

Define an differential operator L = d2/dx2+2φ′0·d/dx. Notice that for sufficiently
smooth f ,

〈ψ2
0, Lf〉 =

∫ ∞
−∞

e2φ0(x)(f ′′(x) + 2φ′0(x)f ′(x))dx.

Performing integration by parts

〈ψ2
0, Lf〉 =

∫ ∞
−∞

e2φ0(x)f ′′(x)dx+ e2φ0(x)f ′(x)|∞−∞ −
∫ ∞
−∞

e2φ0(x)f ′′(x)dx,

and it follows that 〈ψ2
0, Lf〉 = 0. From the observation, take inner product with

ψ2
0 to the first order balance equation and get

〈ψ2
0, Lφ1〉 = 0 = 〈ψ2

0, V1〉 − E1〈ψ2
0, 1〉 = 〈ψ2

0, V1〉 − E1.

Therefore,

E1 = 〈ψ2
0, V1〉 =

∫ ∞
−∞

V1(x)[ψ0(x)]2dx. (1.4.11)

To find φ1, solve the first order inhomogeneous ODE of φ′1 by integrating factora,
or observe that∫ x

−∞
ψ2

0Lφ1dy =

∫ x

−∞

d

dy

(
ψ2

0

dφ1

dy

)
dy = ψ2

0(x)φ′1(x)

=

∫ x

−∞
ψ2

0(V1 − E1)dy

and it yields that

φ′1(x) =
1

ψ2
0(x)

∫ x

−∞
ψ2

0(V1 − E1)dy.

Similarly, find the second order balance equation

φ′′2 + 2φ′0φ
′
2 + (φ′1)2 = −E2 =⇒ Lφ2 = −(φ′1)2 − E2.

Therefore, E2 = −〈ψ2
0, (φ

′
1)2〉.

aIn hierarchical system, use Green function, set Ansatz, or various DE methods.
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Chapter 2

Matched Asymptotic Expansions

For most of singular perturbation problem of differential equations, the solution has extreme
changes because a singular problem converges to a differential equation with different order or
behavior as ε → 0. If we apply the regular asymptotic expansion, it fails to represent such
drastic change and to match all boundary condition. To resolve the problem, we introduce
matched asymptotic expansion which approximates the exact solution by zooming in the ex-
treme changing zones, such as inner or boundary layers, together with the regular expansion
for outer region.

2.1 Introductory example

Consider a singular problem {
εy′′ + 2y′ + 2y = 0 , 0 < x < 1

y(0) = y(1) = 1
(2.1.1)

If ε = 0, then we have a first order ODE. It only needs one boundary condition. It yields to
have drastic dynamics on boundary layer. Remark that boundary layer could be interior, not
only near boundary of domain.

2.1.1 Outer solution by regular perturbation

Set y(x) ∼ y0(x) + εy1(x) + · · · . Substitute into equation (2.1.1) and we have

ε(y′′0(x) + εy′′1(x) + · · · ) + 2(y′0(x) + εy′1(x) + · · · ) + 2(y0(x) + εy1(x) + · · · ) = 0.

Balance O(1) and it provides

y′0 + y0 = 0 =⇒ y0(x) = ae−x.

It leads to dilemma that the solution has only one arbitrary constant but we have two boundary
conditions. It is over-determined. Moreover, the outer solution cannot describe solution over
the whole domain [0, 1]. The following question is which boundary layer would we use?

31
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(a) Possible boundary layer at x = 1 (b) Possible boundary layer at x = 0

Figure 2.1: Two choices of boundary layers. It can be chosen by investigating the sign of y′′

near the boundary layer by looking at the concavity of the function.

2.1.2 Boundary layer

Assume that boundary layer is at x = 0. Introduce the stretched coordinate x̃ = x/εα, α > 0.
Treat x̃ as fixed when ε is reduced. Setting Y (x̃) = y(x) yields

ε1−2αd
2Y

dx̃2
+ 2ε−α

dY

dx̃
+ 2Y = 0, Y (0) = 0. (2.1.2)

Try a solution of a form

Y (x̃) ∼ Y0(x̃) + εγY1(x̃) + · · · , γ > 0.

Substitution into inner equation provides

ε1−2α d
2

dx̃2
(Y0 + εγY1 + · · · )︸ ︷︷ ︸

(1)

+ 2ε−α
d

dx̃
(Y0 + εγY1 + · · · )︸ ︷︷ ︸

(2)

+ 2(Y0 + εγY1 + · · · )︸ ︷︷ ︸
(3)

= 0.

One need to determined correct balance condition:

• Balance (1) and (3) with taking (2) is higher order. Then it requires α = 1/2. Then (1),
(3) = O(1), but (3) = Oε−1/2. (×)

• Balancing (2) and (3) gives outer solution. (×)

• Balance (1) and (2) with taking (3) is higher order. Then it requires α = 1. Then (1),
(2) = O(ε−1) and (3) = O(1). (Yay!)

Choosing the last balance, one can obtain an equation from O(ε−1) terms

Y ′′0 + 2Y ′0 = 0, 0 < x̃ <∞.

One can get inner solution Y0(x̃) = A(1− e−2x̃), where A is unknown constant.
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2.1.3 Matching

It remains to determine the constant A. The inner and outer solutions are both approximations
of the same function. Hence they sould agree in the transition zone between inner and outer
layers. Thus

lim
x̃→∞

Y0(x̃) = lim
x→0+

y0(x), (2.1.3)

and yields A = e. Therefore, Y0(x) = e(1− e1−2x/ε).

2.1.4 Composite expression

So far, we have a solution in two pieces, neither is uniformly valid in x ∈ [0, 1]. We would like
to construct a composite solution that holds everywhere. One way is subtracting constant to
match each one

Y (x) ∼ y0(x) + Y (x/ε)− y0(0). (2.1.4)

Near x = 0, y0(x) is canceled out with the constant and vice versa.
The matching condition Y0(+∞) = y0(0+) may not work in general. First, the limits might

not exist. Second, complication may arise when constructing second order terms. A more
general approach is to explicitly introduce an intermediate region between inner and outer
domain. Introduce an intermediate variable xη = x/η(ε) with ε� η � 1. The inner and outer
solution should give same result when expression in terms of xη. Then

1. change from x to xη in outer expansion youter(xη). Assume there is η1(ε) such that youter

is valid for η1(ε)� η(ε) ≤ 1.

2. Change variable x̃ to xη in inner expansion to obtain yinner(xη). Assume there is η2(ε)
such that inner is valid for ε� η(ε)� η2(ε).

3. If η1 � η2, then domain of validity overlap (because inner expansion valid on x ≤ η2 and
outer expansion valid on x ≥ η2) and we require youter ∼ yinnter in the overlap region.

Return to our particular example. Let xη = x/εβ with 0 < β < 1. Then

yinner ∼ A(1− e−2xη/ε1−β) ∼ A+O(εβ−1),

and
youter ∼ e1−xηεβ ∼ e+O(εβ).

These are hard to match so we consider higher-order term. Find the second balance equation

y′′1 + y1 = −1

2
y′′0 , y1(1) = 0 =⇒ y1(x) =

1

2
(1− x)e1−x

from O(ε) terms of outer expansion and

Y ′′1 + 2Y ′1 = −2Y0, Y1(0) = 0 =⇒ Y1(x̃) = B(1− e−2x̃)− x̃e(1 + e−2x̃)

from O(1) terms of inner expansion. Determine B by matching on intermediate zone

youter ∼ e1−xηεβ +
ε

2
(1− xηεβ)e1−xηεβ
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∼ e · 1− e · xηεβ +
ε

2
· e · 1 + e · 1

2
x2
ηε

2β + · · ·

yinner ∼ e(1− eξ) + ε
(
B(1− eξ)− xη

ε1−β
e(1 + eξ)

)
, ξ = −2xη/ε

1−β

∼ e− εβxη · e+ ε ·B + · · · ,

and yields B = e/2. Therefore, the composite solution is

y(x) ∼ y0(x) + εy1(x) + Y0(x/ε) + εY1(x/ε)−

e− xηεb︸︷︷︸
=x

e+
e

2
· ε

 . (2.1.5)

Remark 2.1.1. Things to look for in more general problems on [0, 1]

1. The boundary layer could be at x = 1 or there could be boundary layers at both ends.
At x = 1, the stretched coordinate is x̃ = (x− 1)/εα.

2. There is an interior layers at some x0(ε)

x̃ =
x− x0

εα
.

3. ε-dependence could be funky, e.g. ν = −1/ log ε.

4. The solution odes not have layered structure.

2.2 Extensions: multiple boundary layers, etc.

2.2.1 Multiple boundary layers

Consider a boundary value problem

ε2y′′ + εxy′ − y = −ex, with y(0) = 2, and y(1) = 1, (2.2.1)

which is singular and non-linear. Note that in case when ε = 0, we get y = ex and it does
not match any boundary conditions. This solution is the first term in the outer solution, i.e.
y0(x) = ex.

Start to find inner solution at x = 0. Set x̃ = x/εα and Y (x̃) = y(x). Then we have

ε2−2α d
2

dx̃2
Y︸ ︷︷ ︸

(1)

+ εx̃
d

dx̃
Y︸ ︷︷ ︸

(2)

− Y︸︷︷︸
(3)

= −e−x̃εα = −(1 + x̃εα + · · · )︸ ︷︷ ︸
(4)

.

In order to balance (1),(3) and (4), we require α = 1. Then taking Y ∼ Y0 + · · · yields the
following balance equation for O(1)

Y ′′0 − Y0 = −1, Y0(0) = 2.

Its general solution is

Y0(x̃) = 1 + Ae−x̃ + (1− A)ex̃, 0 < x̃ <∞.
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To achieve A, matching Y0(+∞) = y0(0) implies A = 1. At x = 1, setting x̃ = (x− 1)/εβ and
Y (x̃) = y(x) provides that

ε2−2β d
2

dx̃2
Y + (1 + εβx̃)ε1−β

d

dx̃
Y − Y = e−1+εβ x̃.

Achieve balance for β = 1 and we obtain

Y
′′
0 + Y

′
0 − Y 0 = −e, −∞ < x̃ < 0, with Y 0(0) = 1.

Its general solution is
Y 0(x̃) = e+Ber+x̃ + (1− e−B)er−x̃,

where r± = (−1 ±
√

5)/2. Matching Y 0(−∞) = y0(1) provides B = 1 − e. Therefore, its
composite solution is

y ∼ y0(x) +
[
Y0

(x
ε

)
− Y0(+∞)

]
+
[
Y 0

(x
ε

)
− Y 0(−∞)

]
∼ ex + e−x/ε + (1− e)e−r+(1−x)/ε.

2.2.2 Interior layers

It is also possible for a boundary layer to occur in the interior of the domain rather than
at a physical boundary – matching now has to determined the location at the interior layer.
Consider a boundary value problem

εy′′ = y(y′ − 1), 0 < x < 1 (2.2.2)

with y(0) = 1 and y(1) = −1. For its outer equation, setting y ∼ y0 + · · · yields

y0(y′0 − 1) = 0 =⇒ y0 = 0 or y0(x) = x+ a

for some constant a. Since the outer equation does not satisfy both boundary condition at
once, we need to find a boundary layer to fit boundary conditions.

Assume that boundary layer is at x = 0. In the boundary layer, y′′ > 0 and y′ < 0. Since y
can be positive, we cannot match signs of differential equation everywhere. If boundary layer
is at x = 1, then y′′ < 0 and y′ − 1 < 0. Since y can be negative, it cannot match signs
everywhere in boundary layer. What if it has interior layer at x = x0? For x − x0 = 0−, we
have y′′ < 0, y′ − 1 > 0, but y > 0. For x − x0 = 0+, we have y′′ > 0, y′ − 1 < 0, but y < 0.
Thus interior layer can match the signs.

From the argument of interior layer argument, find inner solution by setting x̃ = (x−x0)/εα,
0 < x0 < 1. Then we have two outer regions 0 ≤ x < x0 and x0 < x ≤ 1. The inner equation
is

ε1−2αY ′′ = ε−αY Y ′ − Y,

and one can balance if α = 1. Setting Y (x̃) ∼ Y0(x̃) + · · · gives

Y ′′0 = Y0Y
′

0 =⇒ Y ′0 =
1

2
Y 2

0 + A.

It has three general solution depending on sign of A:
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1. Y0 = B
[

1−DeBx̃
1+DeBx̃

]
if A > 0,

2. Y0 = B tan
[
C − Bx̃

2

]
if A < 0,

3. Y0 = 2
C−x̃ if A = 0.

Three forms (rather than a single general solution) reflects non-linearity.
Next, match the inner solution with outer solution

y0(x) =

{
x+ 1 , x < x0

x− 2 , x0 < x
.

Only inner solution 1. can match these outer solutions. Without loss of generality, assume
B > 0 and we get

−B = Y0(+∞) = y0(x+
0 ) = x0 − 2 and B = Y0(−∞) = y0(x−0 ) = x0 + 1.

It yields x0 = 1/2 and B = 3/2. What about D? Remember that y(x0) = 0. This implies that

Y0(x0) = 0 =
3

2
· 1−D

1 +D
=⇒ D = 1.

Therefore,

Y0(x̃) ∼ 3

2
· 1− e3x̃/2

1 + e3x̃/2
.

Finally, the composite solution can be constructed in the two domains [0, x0) and (x0, 1]

y(x) ∼

{
x+ 1 + 3

2
· 1−e3(2x−1)/4ε

1+e3(2x−1)/4ε − 3
2

, 0 ≤ x < x0

x− 2 + 3
2
· 1−e3(2x−1)/4ε

1+e3(2x−1)/4ε + 3
2

, x0 < x ≤ 1
.

2.3 Partial differential equations

Consider Burger’s equation

ut + u · ux = εuxx , −∞ < x <∞, t > 0 (2.3.1)

u(x, 0) = φ(x) (2.3.2)

Notice that this perturbation problem is singular because type of solution is changed from
parabolic to hyperbolic when ε > 0 to ε = 0. Assume that φ(x) is smooth and bounded except
for a jump continuity at x = 0 with φ(0−) > φ(0+) and φ′ ≥ 0. For concreteness, set

u(x, 0) =

{
1, x < 0

0, 0 < x
.

This is an example of a Riemann problem – evolves into a traveling front that sharpens as
ε → 0. We can handle it in similar way for boundary layer problem. For outer solution,
expanding u(x, t) ∼ u0(x, t) + · · · gives balance equation for O(1) terms

∂tu0 + u0 · ∂xu0 = 0.
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Solve it using the method of characteristics

dt

dτ
= 1,

dx

dτ
= u0 and

du0

dτ
= 0,

and it yields characteristic straight lines

x = x0 + φ(x0)t.

Characteristic into set at the shock x = s(t) with determined using the Rankine-Hugoniot
equation

ṡ =
1

2
· [φ(x+

0 )]2 − [φ(x−0 )]2

φ(x+
0 )− φ(x−0 )

=
1

2
[φ(x+

0 ) + φ(x−0 )]. (2.3.3)

We will derive an equation for s(t) using match asymptotics. Introduce a moving inner layer
around s(t)

x̃ =
x− s(t)
εα

.

The inner PDE for U(x̃, t) = u(x, t)

∂tU − ε−αs′(t)∂x̃U + ε−αU · ∂x̃U = ε1−2α∂2
x̃U.

In order to balance terms, require α = 1 and U ∼ U0 + · · ·

−s′(t)∂x̃U0 + U0 · ∂x̃U0 = ∂2
x̃U0.

Integrating with respect to x̃ gives

∂x̃U0 =
1

2
U2

0 − s′(t)U0 + A(t).

Its matching conditions are

lim
x̃→−∞

U0 = u−0 and lim
x̃→+∞

U0 = u+
0

where u±0 = limx→s(t)± u0(x, t). Since U0(x̃, t) is a constant for x̃→ ±∞, we have ∂x̃U0 → 0 as
x̃→ ±∞. Then we have

0 =
1

2
[u−0 ]2 − s′(t)u−0 + A(t),

0 =
1

2
[u+

0 ]2 − s′(t)u+
0 + A(t).

Subtracting part of equations yields

s′(t) =
1

2
· [φ(x+

0 )]2 − [φ(x−0 )]2

φ(x+
0 )− φ(x−0 )

=
1

2
[φ(x+

0 ) + φ(x−0 )].

Hence A(t) = 1
2
u+

0 u
−
0 . We now note that the inner equation can be rewritten as

∂x̃U0 =
1

2
(U0 − u+

0 )(U0 − u−0 ),
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with u±0 = u±0 (t). Then one can achieve the following equations∫
dU0

[
1

U0 − u+
0

− 1

U0 − u−0

]
=

1

2

∫
dx̃(u+

0 − u−0 )

=⇒ log

∣∣∣∣U0 − u+
0

U0 − u−0

∣∣∣∣ =
1

2
(u+

0 − u−0 )x̃+ C(t)

=⇒ U0 − u+
0

u−0 − U0

= b(x̃, t) = B(t)e(u+0 −u
−
0 )x̃/2

where B(t) = eC(t). Therefore,

U0(x̃, t) =
u+

0 + b(x̃, t)u−0
1 + b(x̃, t)

.

In order to determine B(t), we have to go to next order [See Holmes for more details]. You
may find, in the end,

B(t) =

√
1 + tφ′(x+

0 )

1 + tφ′(x−0 )
.

2.4 Strongly localized perturbation theory

This work is mainly done by Michael J. Ward, see [SWF07; BEW08; CSW09; Pil+10; Kur+15]
for more details. Consider a diffusion equation with small holes. Before we start to apply
perturbation theory on the problem, recall Green’s function in two and three dimensional space.
Green’s function is solution with single input data, especially in case of Laplace operator,

4u = δ(x− x0), in Rn, n = 2, 3.

Then u ∼ −1/4π|x− x0| as x→ x0 in 3D and u ∼ log |x− x0|/2π as x→ x0 in 2D. In case of
3D, the Laplace operator in spherical coordinate with angular symmetry is

4u = urr +
2

r
ur, for |x− x0| > 0,

and its solution is u(r) = B/r for some constant r. By taking integral in Ωε, ball centered at
x0 with radius ε, we get∫

Ωε

4udx =

∫
∂Ωε

∇u · nds = 4πr2 · ur = −4πB =

∫
Ωε

δ(x− x0)dx = 1.

It yields that u(r) = −1/4πr, which is the Green’s function in 3D.

2.4.1 Eigenvalue asymptotics in 3D

Let Ω be a 3D bounded domain with a hole of “radius” O(ε), denoted by Ωε, removed from Ω.
Consider an eigenvalue problem in Ω\Ωε as follows:

4u+ λu = 0, in Ω\Ωε

u = 0, on ∂Ω

u = 0, on ∂Ωε∫
Ω\Ωε u

2dx = 1

. (2.4.1)
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We assume that Ωε shrinks to a point x0 as ε→ 0. For example, we could assume Ωε to be the
sphere |x− x0| ≤ ε. The unperturbed problem is

4φ+ λφ = 0, in Ω

φ = 0, on ∂Ω∫
Ω\Ωε φ

2dx = 1

. (2.4.2)

Assume this has eigenpair φj(x) and µj for j = 0, 1, · · · with
∫

Ω
φjφkdx = 0 if j 6= k and

φ0(x) > 0 for x ∈ Ω. We look for perturbed eigenpair near the φ0(x) and µ0. Expand
λ ∼ µ0 + ν(ε)λ1 + · · · where (ν(ε)→ 0 as ε→ 0.) In the outer region away from the hole, we
take u ∼ φ0(x) + ν(ε)u1(x) + · · · . Since Ωε → {x0} as ε→ 0, we have the following

4u1 + µ0u1 = −λ1φ0, in Ω\{x0}
u1 = 0, on ∂Ω∫

Ω
2u1φ0dx = 0

. (2.4.3)

Construct the inner solution near the hole. Let y = (x − x0)/ε and set V (x; ε) = u(x0 + εy).
Then we find that V satisfies

4yV + λε2V = 0, outside of Ω0 = Ωε/ε.

Take V ∼ V0 + ν(ε)V1 + · · · and get
4yV0 = 0, outside Ω0

V0 = 0, on ∂Ω0

V0 → φ0(x0) as |y| → ∞
.

Try a solution of it by V0 = φ0(x0)(1− Vc(y)). Then Vc satisfies
4yVc = 0, outside Ω0

Vc = 1, on ∂Ω0

Vc → 0 as |y| → ∞
.

A classical result from PDE theory is Vc ∼ C/|y| as |y| → ∞ where C is electrostatic capaci-
tance of Ω0, determined by shape and size of Ω0. We now have

V0(x) ∼ φ0(x0)

[
1− εC

|x− x0|

]
.

It has to match
φ0(x0) + ν(ε)u1

as x → x0. This yields that ν(ε) = ε and u(x) → −φ0(x0)C/|x − x0| as x → x0. To evaluate
perturbed eigenvalue λ1, return to equation (2.4.3). Since u1 → 4πφ0(x0)C · (−1/4π|x − x0|)
as x→ x0, then we have the modified problem{

Lu1 ≡ 4u1 + µu1 = −λ1φ0 + 4πCφ0(x0)δ(x− x0), in Ω

u1 = 0, on ∂Ω
. (2.4.4)
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Use Green’s identity ∫
Ω

φ0Lu1 − u1Lφ0dx =

∫
∂Ω

φ0∂nu1 − u1∂nφ0ds.

Since φ0 = u1 = 0 on ∂Ω and Lφ0 = 0, we have

0 =

∫
Ω

φ0Lu1dx =

∫
Ω

φ0[−λ1φ0 + 4πCφ0(x0)δ(x− x0)]dx,

and it yields

λ1 =
4πCφ2

0(x0)∫
Ω
φ2

0dx
.

Therefore, λ ∼ µ0 + ελ1.

Remark 2.4.1. 1. Let us assume that u = 0 on ∂Ω is replaced by the no-flux condition on
∂Ω. Then ε = 0 problem becomes

4φ+ µφ = 0,

∂nφ = 0, ∂Ω∫
Ω
φ2dx = 1

.

The principal eigenvalues µ0 = 0 and φ0(x) = 1/|ω|1/2. In this case, λ1 ∼ 4πCε/|Ω| (to
leading order it is independent of location x0.)

2. For multiple holes Ωεj for j = 1, · · ·n and well-separated, its eigenvalue expansion is
λ ∼ µ0 + 4πε

∑
j cj[φ0(xj)]

2/
∫

Ω
φ2

0dx.

2.4.2 Eigenvalue asymptotics in 2D

In the same fashion with 3D case, we want to find an asymptotic expansion of the same
problem (2.4.1), but 2D. Let µ0 and φ0 be principal eigenpair of unperturbed problem (2.4.2).
Set λ ∼ µ0 + ν(ε)λ1 + · · · for eigenvalue and u ∼ φ0 + ν(ε)u1 + · · · in outer region, where
ν(ε) → 0 as ε → 0. Then the equation for second term of outer expansion is (2.4.3). In
the inner region, set y = (x − x0)/ε and take u(x) = ν(ε)V0(y) where 4yV0 = 0. We want
V0(y) ∼ A0 log |y| as |y| → ∞. To do so, setting V0 = A0Vc where{

4yVc = 0, y ∈ Ω0

Vc = 0, y on ∂Ω0

(2.4.5)

gives that
Vc ∼ log |y| − log d+O(1/|y|), as |y| → ∞

where d is logarithmic capacitance determined by shape of Ω0. It is interesting enough to notice
the logarithmic capacitance of simple objects in the table. Then write inner solution in outer
variable

u(x) ∼ ν(ε)A0 log
|y|
d
∼ ν(ε)A0 [− log(εd) + log |x− x0|] .

Matching solution yields that

φ0(x0) + ν(ε)u1(x) ∼ − log(εd)A0ν(ε) + A0ν(ε) log |x− x0|,
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Ω0 Geometric info Capacitance d
Circle radius a a
Ellipse radius a, b (a+ b)/2

Triangle side h
√

3[Γ(1/3)]3h/(8π2)
Rectangle side h [Γ(1/4)]2h/(4π3/2)

Table 2.1: The logarithmic capacitance in 2D for simple geometric figures.

as x→ x0. In order to match the conditions, set ν(ε) = −1/ log(εd). Then unknown constant
A0 = φ0(x0). Thus,

u1(x) ∼ φ0(x0) log |x− x0|,

as x → x0. Hence, by the same procedure in 3D case by using Green’s identity, one can find
eigenvalue expansion

λ ∼ µ0 + 2π · ν(ε)
[φ0(x0)]2∫

Ω
φ2

0dx
.

Remark 2.4.2. Further terms in expansion yields

λ ∼ µ0 + A1ν + A2ν
2 + A3ν

3 + · · · .

Its potential problem is that the log decreases very slowly as ε decreases. Then the remaining
term is quite large and break the asymptotic expansions. By summing the log series, one can
solve the problem.

2.4.3 Summing all logarithmic terms

Consider Poisson’s equation in a domain with one small hole given
4w = −B, in Ω\Ωε

w = 0, on ∂Ω

w = 0, on ∂Ωε

. (2.4.6)

In the outer region, set w(x; ε) = w0(x; ν(ε)) + σ(ε)w1(x; ν(ε)) + · · · where ν(ε) = −1/ log(εd)
and σ � νk for any k > 0. It gives the outer equation

4w0 = −B, in Ω\{x0}
w = 0, on ∂Ω

w is singular, as x→ x0

. (2.4.7)

In the inner region, set y = (x−x0)/ε and V (y; ε) = w(x0+εy; ε). Expand V (y; ε) = V0(y; ν(ε))+
µ0(ε)V1(y; ν(ε)) + · · · where µ0 � νk for all k > 0. Then V0 satisfies{

4yV0 = 0, outside Ω0

V0 = 0, on ∂Ω0

. (2.4.8)



42 2.5. Exercises

The leading order matching condition is

lim
x→x0

w0(x; ν) ∼ lim
|y|→∞

V0(y; ν).

Introduce an unknown function γ = γ(ν) with γ(0) = 1 and let V0(y; ν) = νγVc(y). Then it
follows that 

4yVc = 0, outside Ω0

Vc = 0, on ∂Ω0

Vc ∼ log |y|, as |y| → ∞
.

Thus, Vc(y) ∼ log |y| − log d+O(1/|y|) for 1� |y|. In original coordinate,

V0(y; ν) ∼ γ + νγ log |x− x0|.

Matching condition gives w0 ∼ νγ log |x− x0|+ γ as x→ x0. So outer problem is
4w0 = −B, in Ω\{x0}
w = 0, on ∂Ω

w ∼ γ + νγ log |x− x0| as x→ x0

. (2.4.9)

Introduce wOH(x) and G(x;x0 with{
4wOH = −B, in Ω

wOH = 0, on ∂Ω
,

{
4G = δ(x− x0), in Ω

G = 0, on ∂Ω
.

One can find G(x;x0) = 1
2π

log |x−x0|+R0(x;x0) where R0is the regular prt of Green’s function
which converges as x→ x0. Then we can write down the solution

w0(x; ν) = wOH(x) + 2πγνG(x;x0).

As x→ x0, we obtain the asymptotic condition

wOH(x0) + 2πγν

[
1

2π
log |x− x0|+R(x;x0)

]
= γ + γν log |x− x0|,

and it yields

γ(ν) =
wOH(x0)

1− 2πνR0(x0;x0)
.

Therefore, the final expansion of the Poisson equation is

w(x) ∼ wOH(x) +
ν(ε)

1− 2πR0(x0;x0)ν(ε)
· 2πwOH(x0)G(x;x0).

2.5 Exercises

1. Find a composite expansion of the solution to the following problems on x ∈ [0, 1] with
a boundary layer at the end x = 0:

(a) εy′′ + 2y′ + y3 = 0, y(0) = 0, y(1) = 1/2.
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Solution: To find outer expansion y, set y ∼ y0 + · · · and balance O(1) terms

0 + 2y′0 + y3
0 = 0.

It yields a general solution
y−2

0 = x+D

for some constant D. Since the boundary layer is at x = 0, boundary condition
at x = 1 determines integrating constant D and yields

y0(x) =
1√
x+ 3

.

Now, construct inner expansion near x = 0. Setting x̃ = x/εα and Y (x̃) = y(x)
yields ODE for inner solution

ε1−2αY ′′ + 2ε−αY ′ + Y 3 = 0.

In order to balance terms, require α = 1 and Y ∼ Y0 + · · · . Then we achieve

Y ′′0 + 2Y ′0 = 0.

A general solution of Y0 is

Y0(x̃) = C(1− e−2x̃)

with boundary condition Y0(0) = 0. Matching condition

lim
x̃→∞

Y0(x̃) = lim
x→0+

y0(x)

yields C = 1/
√

3. Therefore, the composite expansion of the solution is

y(x) ∼ y0(x) + Y
(x
ε

)
− 1√

3
=

1√
x+ 3

− 1√
3
e−2x/ε.

(b) εy′′ + (1 + 2x)y′ − 2y = 0, y(0) = ε, y(1) = sin(ε).

Solution: To find outer expansion y, set y ∼ y0 + εy1 + · · · and balance O(1)
terms

0 + (1 + 2x)y′0 − 2y′ = 0, y0(0) = y0(1) = 0,

and its general solution is y0(x) = C(2x + 1). Since we know that it has a
boundary layer at x = 0, match boundary condition and get C = 0. Thus
y0(x) = 0. Balancing O(ε) terms yields that

y′′0 + (1 + 2x)y′1 − 2y′1, y1(0) = y1(1) = 1,

and its solution with boundary condition at x = 1 is y1(x) = (2x + 1)/3. It
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follows that the outer expansion is

y(x) ∼ ε

3
(2x+ 1) + · · · .

Now, consider inner expansion near x = 0. Setting x̃ = x/εα and Y (x̃) = y(x)
yields ODE for inner solution

ε1−2αY ′ + ε−αY ′ + 2x̃Y ′ − 2Y = 0.

To balance the equation, it requires that α = 1 by setting Y ∼ Y0. Then we
have

Y ′′0 + Y ′0 = 0, Y0(0) = 0 =⇒ Y0(x̃) = D(1− e−x̃).

Matching condition gives

lim
x̃→∞

Y (x̃) = D = lim
x→0

y(x) =
ε

3
.

Therefore, the composite expansion of the solution is

y(x) ∼ εy1(x) + (Y (x/ε)− ε/3) =
ε

3
(2x+ 1− e−x/ε).

2. Consider the integral equation

εy(x) = −q(x)

∫ x

0

[y(s)− f(s)]sds, 0 ≤ x ≤ 1,

where f(x) is positive and smooth.

(a) Taking q(x) = 1 find a composite expansion of the solution y(x). [Hint: convert to
an ODE.]

Solution: Observe that

εy(0) = 0 =⇒ y(0) = 0.

Taking derivative on given integral equation gives

εy′(x) + xy(x) = xf(x).

One can get the outer expansion by setting y(x) ∼ y0(x) + · · ·

xy0(x) = xf(x) =⇒ y0(x) = f(x), 0 < x ≤ 1.

Since f is positive function limx→0 y0(x) = f(0) > 0, which does not match
boundary condition. It implies that the expansion has boundary layer at x = 0.
Scale near x = 0 by taking a new coordinate x̃ = x/εα and Y (x̃) = y(x). In this
coordinate, the smooth function f(x) can be count as a constant f(x) ∼ f(0).
It follows the ODE for inner expansion

ε1−αY ′ + εαx̃Y = εαx̃f(0).
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To balance the equation, it requires 1 − α = α, i.e. α = 1/2 and its general
solution with boundary condition Y (0) = 0 yields the first term inner expansion

Y (x̃) = f(0)
(

1− e−x̃2/2
)
,

and it matches with outer solution

lim
x̃→∞

Y (x̃) = f(0) = lim
x→0

f(x) = lim
x→0

y0(x).

Therefore, the composite expansion of the integral equation is

y(x) ∼ f(x)− f(0)e−x
2/2ε.

(b) Generalize to the case that q(x) is a positive smooth function.

Solution: It is also true that y(0) = 0 because f is positive function. Taking
derivative and substituting integral term gives

εy′ = ε
q′

q
y − q(y − f)x,

and one can rewrite it as

ε

(
y

q

)′
+ xq

(
y

q

)
= xf =⇒ εz′ + xqz′ = xf

by setting z = y/q. In the same fashion in part 1., obtain outer expansion by
balancing O(1)

z(x) ∼ z0(x) =
f(x)

q(x)
=⇒ y(x) ∼ y0(x) = f(x).

Since f, q are positive, then z has boundary layer at x = 0. With the same
argument in part 1., one can get the ODE for inner expansion Z(x̃)

Z ′ + xq(0)Z = xf(0) =⇒ Z(x̃) =
f(0)

q(0)

(
1− e−q(0)x̃2/2

)
,

that is Y (x̃) ∼ f(0)
(

1− e−q(0)x̃2/2
)

. Therefore, its composite expansion is

y(x) ∼ f(x)− f(0)e−q(x)x2/2ε.

(c) Show that solution of part 2. still holds if q(x) is continuous but not differentiable
everywhere on [0, 1].

Solution: The basic idea showing the claim is to derive all the expansions from



46 2.5. Exercises

integral equation. For the outer expansion, setting y ∼ y0 gives

0 = −q(x)

∫ x

0

(y0(s)− f(s))sds =⇒
∫ x

0

(y0(s)− f(s))sds = 0

because q(x) is positive. Without worrying about differentiability of q, take
derivative on the equation and get same outer expansion y0(x) = f(x). In
the similar way, to find the inner expansion, set the new coordinate x̃ = x/εα

and Y (x̃) = y(x). By approximating continuous function q(x) = q(0) and
f(x) = f(0) in the boundary layer, it follows that

ε1−αY = −q(0)

∫ εαx̃

0

(Y (s/εα)− f(0))sds.

Now, one can take derivative and get the same differential equation for inner
expansion. Therefore, one can achieve the same composite expansion.

3. (Boundary layer at both ends) Find a composite expansion of the following problem on
[0, 1] and sketch the solution:

εy′′ + ε(x+ 1)2y′ − y = x− 1, y(0) = 0, y(1) = −1.

Solution: To find outer expansion y, set y ∼ y0 + · · · and balance O(1) terms

0 = y0 + x− 1 =⇒ y0(x) = 1− x.

It does not satisfy neither boundary conditions. Hence there are two boundary layer
at x = 0 and x = 1. First, consider boundary layer at x = 0 by setting x̃ = x/εα for
α > 0 and U(x̃) = y(x). It follows ODE for U

ε1−2αU ′′ + (ε1+αx̃2 + ε · 2x̃+ ε1−α)U ′ = U − 1 + εαx̃.

Since α > 0, the smallest order of LHS is O(1 − 2α) and RHS is O(1). To balance
them, require α = 1/2 and setting U ∼ U0 provides

U ′′ = U − 1 =⇒ U(x̃) = Aex̃ +Be−x̃ + 1.

By boundary condition at x = 0, y(0) = 0, we achieve A + B + 1 = 0. Matching
condition yields

lim
x̃→∞

U(x̃) = lim
x→0+

y(x) = 1 =⇒ A = 0,

and U(x̃) = 1− e−x̃. Similarly, to find inner expansion at x = 1, set ξ = (x− 1)/εβ

and V (ξ) = y(x). It provides ODE for V

ε1−2βV ′′ + (ε1+βx̃2 + ε · 4x̃+ ε1−β · 4)V ′ = V εβx̃.
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Since β > 0, the smallest order of LHS is O(1 − 2α) and RHS is O(1). To balance
them, require β = 1/2 and setting U ∼ U0 provides

V ′′ = V =⇒ V (ξ) = Ceξ +De−ξ.

By boundary condition at x = 1, that is y(1) = −1, we obtain C+D = −1. Matching
outer and inner layer near x = 1 gives that

lim
ξ→−∞

V (ξ) = lim
x→1−

y(x) = 0 =⇒ D = 0,

and V (ξ) = −eξ. Therefore, the composite expansion of the solution is

y(x) ∼ y0(x) +
[
U
( x

ε1/2

)
− 1
]

+

[
U

(
x− 1

ε1/2

)
− 0

]
,

and it follows that
y(x) ∼ 1− x− e−x/ε1/2 − ex−1/ε1/2 .

4. (Matched asymptotics can also be used in the time domain) The Michaelis-Menten reac-
tion scheme for an enzyme catalyzed reaction is

ds

dt
= −s+ (µ+ s)c,

ε
dc

dt
= s− (κ+ s)c,

where s(0) = 1, c(0) = 0. Here s(t) is the concentration of substrate, c(t) is the concen-
tration of the catalyzed chemical product, and µ, κ are positive constants with µ < κ.
Find the first term in the expansions in the outer layer, the initial layer around t = 0,
and the composite expansion.

Solution: Find the expansions in the outer layer by setting s ∼ s0 + · · · and c ∼
c0 + · · · and balancing O(1) terms

ds0

dt
= −s0 + (µ+ s0)c0,

0 = s0 − (κ+ s0)c0.

It yields that

s0(t)− 1 + κ log s0(t) = (µ− κ)t, c0(t) =
s0(t)

s0(t) + κ
.

Notice that s0 is implicitly determined. One can observe that c has a layer near t = 0.
Setting t̃ = t/εα, S(t̃) = s(t) and C(t̃) = c(t) gives the system of ODE

ε−α
dS

dt̃
= −S + (µ+ S)C,

ε1−α
dC

dt̃
= S − (κ+ S)C
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It requires that α = 1 to balance equation for C not same with outer expansion. By
setting S ∼ S0 and C ∼ C0 + · · · , it follows that

dS0

dt̃
= 0,

dC0

dt̃
= S0 − (κ+ S0)C0.

First equation with initial condition s(0) = 1 gives that S0(t̃) = 1. Hence we write
ODE for C0 as

dC0

dt̃
= 1− (κ+ 1)C0 =⇒ C0(t̃) =

1

κ+ 1

(
1− e−(κ+1)t̃

)
.

Fortunately, this solution satisfies matching condition

lim
t̃→∞

C0(t̃) =
1

κ+ 1
=

s0(0)

s0(0) + κ
= lim

t→0
c0(t).

Therefore, the composite solution of perturbation equation is

c(t) ∼ c0(t)− 1

κ+ 1
e−(κ+1)t/ε

where c0 is implicitly determined by s0.

5. (Implicit inner solution) A classical model in gas lubrication theory is the Reynolds
equation

ε
d

dx

(
H3yy′

)
=

d

dx
(Hy), 0 < x < 1,

where y(0) = y(1) = 1. Here H(x) is a known, smooth, positive function with H(0) 6=
H(1).

(a) Suppose that there is a boundary layer at x = 1. Construct the first terms of the
outer and inner solutions. Note that the leading order term Y0 of the inner solution
is defined implicitly according to (x− 1)/ε = F (Y0). Calculate the function F .

Solution: Setting y ∼ y0 and balancing O(1) terms yields outer solution equa-
tion

0 =
d

dx
(Hy0) =⇒ y0(x) =

C

H(x)

where C is constant. Since we have boundary layer at x = 1, then applying
boundary condition at x = 0 to outer solution gives y0(x) = H(0)/H(x). In the
inner layer, setting x̃ = (x− 1)/εα and Y (x̃) = y(x) provides the ODE for inner
solution

ε1−2α d

dx̃

(
H3Y Y ′

)
= ε−α

d

dx̃
(HY ).

Since the inner layer near x = 1, then continuous function H can be approxi-
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mated as H(x) ∼ H(1). It follows that

ε1−2αH3(1)
d

dx̃
(Y0Y

′
0) = ε−αH(1)

d

dx̃
Y0.

for first expansion term Y0 of Y . To balance the equation, it requires α = 1 and
now get

d

dx̃
(Y0Y

′
0) =

1

H2(1)

d

dx̃
Y0.

The general solution of ODE is given by

Y0(x̃)− 1− C log

∣∣∣∣1 +
Y

C

∣∣∣∣ =
x̃

H2(1)

with boundary condition Y0(0) = 1. Matching condition gives

lim
x̃→∞

Y0(x̃) = lim
x→1

y0(x) =
H(0)

H(1)
.

It determines C = −H(0)/H(1). Thus we have

F (Y0) = H2(1)(Y0 − 1) +H(0)H(1) log

∣∣∣∣1− H(1)Y0

H(0)

∣∣∣∣ = x̃.

(b) Use matching to construct the composite solution.

Solution: By the result from part 1., one can write the composite solution as

y(x) ∼ H(0)

H(x)
+

[
F−1

(
x− 1

ε

)
− H(0)

H(1)

]
.

(c) Show that if the boundary layer was assumed to be at x = 0, then the inner and
outer solutions would not match.

Solution: It follows the same procedure in part 2., but achieve different F

F (Y0) = H2(0)(Y0 − 1) +H(0)H(1) log

∣∣∣∣1− H(0)Y0

H(1)

∣∣∣∣ = x̃.

However, as x̃→∞, the RHS tends to negative infinity. It does not match the
conditions.

6. (Boundary layer at both ends) In a one-dimensional bounded domain, the potential φ(x)
of an ionized gas satisfies

−d
2φ

dx2
+ h(φ/ε) = α, 0 < x < 1,

with boundary conditions
φ′(0) = −γ, φ′(1) = γ.
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Charge conservation requires ∫ 1

0

h(φ(x)/ε)dx = β.

The function h(s) is smooth and strictly increasing with h(0) = 0. The positive constants
α and β are known (and independent of ε), and the constant γ is determined from the
conservation equation.

(a) Calculate γ in terms of α and β.

Solution: Integration on given differential equation over [0, 1] gives

−[φ′(1)− φ′(0)] +

∫ 1

0

h(φ(x)/ε)dx = α · 1 =⇒ −2γ + β = α,

and it yields γ = (β − α)/2.

(b) Find the exact solution for the potential when h(s) = s. Sketch the solution for
γ < 0 and small ε, and describe the boundary layers that are present.

Solution: With h(s) = s, we have

−d
2φ

dx2
+
φ

ε
= α,

and its general solution is

φ(x) = A sinh

(
x√
ε

)
+B cosh

(
x√
ε

)
+ εα,

where A,B are constants. Then one can obtain it derivative

φ′(x) =
1√
ε

[
A cosh

(
x√
ε

)
+B sinh

(
x√
ε

)]
To determine A and B, imposing boundary conditions to the general solution
we have

φ′(0) =
A√
ε

= −γ,

and

φ′(1) =
1√
ε

[
A cosh

(
1√
ε

)
+B sinh

(
1√
ε

)]
= γ

Solving them for A,B yields

A = −γ
√
ε, B = γ

√
ε · 1 + cosh(1/

√
ε)

sinh(1/
√
ε)

.
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Then it follows that

φ′(x) =
γ

sinh(1/
√
ε)

[
sinh

(
x− 1√

ε

)
+ sinh

(
x√
ε

)]
.

For x 6= 0, 1, then φ′(x) decays to zero as ε → 0. Since φ′(0) and φ′(0) are
nonzero, then it implies that φ has boundary layers at x = 0, 1.

(c) Suppose that h(s) = s2k+1, where k is a positive integer, and assume β < α. Find
the first term in the inner and outer expansions of the solution.

Solution: With h(s) = s2k+1, we have

− ε2k+1d
2φ

dx2
+ φ2k+1 = ε2k+1α, (2.5.1)

with same boundary conditions. For ε = 0, φ has a trivial solution. Thus we
expand φ as

φ ∼ εp(φ0 + εqφ1 + · · · ),

and its derivatives are

φ′ ∼ εp(φ′0 + εqφ′1 + · · · ), φ′′ ∼ εp(φ′′0 + εqφ′′1 + · · · ).

First, consider the boundary layer at x = 0. Rescale as x̃ = x/εr and set
Φ(x̃) = φ(x). Then we have

d

dx
→ d

dx

dx̃

dx
= ε−r

d

dx̃
.

It allows the governing equation in the boundary layer at x = 0 to be

− ε2k+1−2rΦ′′ + Φ2k+1 = ε2k+1α, (2.5.2)

with the boundary condition

ε−rΦ′(0) = −γ, (2.5.3)

and it requires r = p and gives Φ0(0) = −γ. Then (2.5.2) turns out to be

− ε2k+1−p(Φ′′0 + εqΦ′′1 + · · · )+
ε(2k+1)p(Φ0 + εΦ1 + · · · )2k+1 = ε2k+1α.

To construct a boundary layer at x = 0, the only remaining case is to balancing
O(ε2k+1−p) and O(ε(2k+1)p) and it requires p = (2k+ 1)/(2k+ 2). Then we have
a differential equation for boundary layer at x = 0

− Φ′′0 + Φ2k+1
0 = 0. (2.5.4)
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Multiplying Φ′0 and perform integration gives

−1

2
(Φ′0)2 +

Φ2k+2
0

2k + 2
= C,

for some constant C. As x̃→∞, Φ0 matches with the outer solution φ(x) = 0
for 0 < x < 1. It implies that C = 0. Then we have its general solutions

Φ0(x̃) =

[
k√
k + 1

(±x̃−D)

]−1/k

,

for some constant D. Its derivative becomes

Φ′0(x̃) = −1

k

[
k√
k + 1

(±x̃−D)

]−(k+1)/k

·
(
± k√

k + 1

)
. (2.5.5)

Imposing boundary condition at x = 0 gives

−1

k

[
− kD√

k + 1

]−(k+1)/k

·
(
± k√

k + 1

)
= −γ.

Since γ = (β − α)/2 < 0, then we choose the negative sign and determine D
such that

− kD√
k + 1

= (−γ
√
k + 1)−k/(k+1) := λ.

Setting κ = k/
√
k + 1 gives

Φ0(x̃) = (λ− κx̃)−1/k . (2.5.6)

Since the boundary layer at x = 1 satisfies the same differential equation (2.5.4),
then one can derive the lowest order boundary layer Ψ0 with rescaling x̂ =
(1− x)/εr

Ψ0(x̂) = (λ+ κx̂)−1/k . (2.5.7)

Therefore, the match asymptotic expansion of the differential equation is

y(x) ∼
[
λ− κx

εr

]−1/k

+

[
λ+

κ(1− x)

εr

]−1/k

, (2.5.8)

where r = (2k + 1)/(2k + 2).

(d) Can one construct a composite solution using the first terms?

Solution: Not exactly :)

7. (Internal boundary layer) Consider the problem

εy′′ + y(1− y)y′ − xy = 0, 0 < x < 1,

with y(0) = 2 and y(1) = −2. A numerical solution for small ε shows that there is a
boundary later at x = 1 and an internal layer at some x0, where y ∼ 0.
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(a) Find the first term in the expansion of the outer solution. Assume that this function
satisfies the boundary condition at x = 0.

Solution: Setting y ∼ y0+· · · and balancing O(1) yields the following equation

y0(1− y0)y′0 − xy0 = 0.

Since we assume that it satisfies y(0) = 2, then y0(x) 6= 0. Then it follows that

(1− y0)y′0 = x =⇒ y0(x) = 1 +
√

1− x2.

(b) Explain why there cannot be a boundary layer at x = 1, which links the boundary
condition at x = 1 with the outer solution of part 1. evaluated at x = 1.

Solution: If it has a boundary layer at near x = 1, then the solution connects
limt→1 y0(x) = 1 and boundary condition y(1) = −2. Then there is x in the
boundary layer such that 0 < y < 1. Since y′′, y′ < 0 in the layer, then one can
conclude

εy′′ + y(1− y)y′ − xy < 0,

that is such expansion cannot satisfy IVP.

(c) Assume that there is an interior layer at some point x0, which links the outer solution
calculated in (a) for 0 ≤ x < x0 with the outer solution y ∼ 0 for x0 < x < 1. From
the matching show that x0 =

√
3/2. Note that there will be an undetermined

constant.

Solution: In the interior layer, scale the coordinate as x̃ = (x− x0)/α and set
Y (x̃) = y(x). Then one can achieve equation for the interior solution

ε1−2αY ′′ + ε−αY (1− Y )Y ′ − (εαx̃+ x0)Y = 0.

Expanding the interior solution as Y ∼ Y0 + · · · and setting α = 1 yields the
balance equation for O(ε−1) terms

Y ′′ + Y (1− Y )Y ′ = 0.

Taking integration on both sides,

Y ′ +
1

2
Y 2 − 1

3
Y 3 = C,

where C is constant. From the right matching condition, limx̃→∞ Y (x̃) =
limx̃→∞ Y

′(x̃) = 0. Hence, C = 0. Invoking partial fraction to the separable
ODE gives the general solution

1

6
x̃+D = −2

9
log Y − 1

3Y
+

2

9
log(3− 2Y ).
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The left matching condition yields that

lim
x̃→−∞

Y (x̃) =
3

2
= lim

x→x−0
y(x) = 1 +

√
1− x2

0,

and it implies that x0 =
√

3/2. With the undetermined constant D, the interior
expansion Y (x̃) = G−1(x̃) where

G(Y ) = 6

[
−2

9
log Y − 1

3Y
+

2

9
log(3− 2Y )−D

]
.

(d) Given the interior layer at x0, construct the first term in the expansion of the inner
solution at x = 1.

Solution: In the similar fashion, setting ξ = (x−1)/εβ and V (ξ) = y(x). Then
we get the same ODE with the left matching condition

V ′′ + V (1− V )V ′ = 0.

Then it follows the general solution

1

6
ξ + E = −2

9
log(−V )− 1

3V
+

2

9
log(3− 2V ),

where E is a constant. Since V (0) = −2, then we have

E = −2

9
log 2 +

1

6
+

2

9
log 7 =

1

6
+

2

9
log

(
7

2

)
.

Therefore, the expansion in the inner layer at x = 1 is V (ξ) = H−1(ξ) where

H(V ) = 6

[
−2

9
log

(
−V
2

)
− 1

3V
+

2

9
log

(
3− 2V

7

)
− 1

6

]
.



Chapter 3

Method of Multiple Scales

3.1 Introductory Example

As in the previous chapter, we will introduce the ideas underlying the method by a simple
example. Consider the initial value problem

y′′ + εy′ + y = 0 for t > 0 (3.1.1a)

y(0) = 0, y′(0) = 1 (3.1.1b)

which models a linear oscillator with weak damping. This reduces to the linear oscillator model
when ε = 0.

3.1.1 Regular expansion

We do not expect boundary layers since (3.1.1) is not a singular problem. This suggests that
the solution might have a regular asymptotic expansion, i.e. we try a regular expansion

y(t) ∼ y0(t) + εy1(t) + . . . as ε −→ 0 (3.1.2)

Substituting (3.1.2) into (3.1.1) and collecting terms in equal powers of ε yields

y′′0 + y0 = 0

y′′n + yn = −y′n−1 for n ≥ 1,

with initial conditions

y0(0) = 0, y′0(0) = 1, yn(0) = y′n(0) = 0, n ≥ 1.

Solving the O(1) and O(ε) equations we obtain

y(t) ∼ sin(t)− 1

2
εt sin(t), (3.1.3)

but this is problematic since the correction term y1(t) contains a secular term t sin(t) which
blows up as t −→∞. Consequently, the asymptotic expansion is valid for only small values of
t, since εy1(t) ∼ y0(t) when εt ∼ 1. The problem is that regular perturbation theory does not

55



56 3.1. Introductory Example

10 20 30 40 50 60 70

−2

−1

1

2

t

y(t)

sin(t)− 0.05t sin(t)
Exact solution

Figure 3.1: Comparison between the regular asymptotic approximation (3.1.4) and the exact
solution (3.1.4) for ε = 0.1.

capture the correct behaviour of the exact solution. Indeed, (3.1.1) is a constant-coefficient
linear ODE and it can be solved exactly:

y(t) =
1√

1− ε2/4
e−εt/2 sin

(
t
√

1− ε2/4
)

(3.1.4)

It is clear that the exact solution decays but the first term in our regular asymptotic approx-
imation (3.1.3) does not. Also, we will pick up the secular terms if we naively expand the
exponential function around t = 0, since

y(t) ≈
(

1− εt

2
+
ε2t2

8
+ . . .

)
sin(t).

3.1.2 Multiple-scale expansion

In fact, there are two time-scales in the exact solution:

1. The slowly decaying exponential component which varies on a time-scale of O (1/ε);

2. The fast oscillating component which varies on a time-scale of O(1).

To identify or separate these time-scales, we introduce the variables

t1 = t, t2 = εαt, α > 0,

where t2 is called the slow time-scale because it does not affect the asymptotic expansion until
εαt ∼ 1. We treat these two time-scales as independent variables and consequently the original
time derivative becomes

d

dt
−→ dt1

dt

∂

∂t1
+
dt2
dt

∂

∂t2
=

∂

∂t1
+ εα

∂

∂t2
. (3.1.5)
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Substituting (3.1.5) into (3.1.1) yields the transformed problem[
∂2
t1

+ 2εα∂t1∂t2 + ε2α∂2
t2

]
y + ε (∂t1 + εα∂t2) y + y = 0, (3.1.6a)

y(t1, t2)

∣∣∣∣
t1=t2=0

= 0, (∂t1 + εα∂t2) y(t1, t2)

∣∣∣∣
t1=t2=0

= 1. (3.1.6b)

Unlike the original problem, additional constraints are needed for (3.1.6) to have a unique
solution, and it is precisely this degree of freedom that allows us to eliminate the secular terms!

We now introduce an asymptotic expansion

y ∼ y0(t1, t2) + εy1(t1, t2) + . . . . (3.1.7)

Substituting (3.1.7) into (3.1.6) yields[
∂2
t1

+ 2εα∂t1∂t2 + ε2α∂2
t2

]
[y0 + εy1 + . . . ]

+ ε (∂t1 + εα∂t2) (y0 + . . . ) + (y0 + εy1 + . . . ) = 0.

The O(1) problem is (
∂2
t1

+ 1
)
y0 = 0,

y0(0, 0) = 0, ∂t1y0(0, 0) = 1,

and its general solution is

y0(t1, t2) = a0(t2) sin(t1) + b0(t2) cos(t1),

where a0(0) = 1, b0(0) = 0. Note that y0(t1, t2) consists of purely harmonic components with
slowly varying amplitude. We now need to determine α in the slow time-scale t2. Observe that
for α > 1 the O(ε) equation is (

∂2
t1

+ 1
)
y1 = −∂t1y0,

and the inhomogeneous term ∂t1y0 will generate secular terms, since it belongs to the kernel
of homogeneous linear operator

(
∂2
t1

+ 1
)
. More importantly, there is no way to generate non-

trivial solution that will cancel the secular term. This can be prevented by choosing α = 1.
The O(ε) equation is (

∂2
t1

+ 1
)
y1 = −2∂t1∂t2y0 − ∂t1y0,

y1(0, 0) = 0, ∂t1y1(0, 0) + ∂t2y0(0, 0) = 0.

Substituting y0 gives(
∂2
t1

+ 1
)
y1 = −2 (a′0 cos(t1)− b′0 sin(t1))− (a0 cos(t1)− b0 sin(t1))

= (2b′0 + b0) sin(t1)− (2a′0 + a0) cos(t1).

The general solution of the O(ε) problem is

y1(t1, t2) = a1(t2) sin(t1) + b1(t2) cos(t1)

− 1

2
(2b′0 + b0) t1 cos(t1)︸ ︷︷ ︸

secular

−1

2
(2a′0 + a0) t1 sin(t1)︸ ︷︷ ︸

secular

,
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with a1(0) = b′0(0), b1(0) = 0. We can choose the functions a0, b0 to remove the secular terms,
which results in

2b′0 + b0 = 0 =⇒ b0(t2) = β0e
−t2/2 = 0, since b0(0) = 0,

and

2a′0 + a0 = 0 =⇒ a0(t2) = α0e
−t2/2 = e−t2/2, since a0(0) = 0.

Hence, a first term approximation of the solution y(t) of (3.1.1) is

y ∼ e−εt/2 sin(t).

One can prove that this asymptotic expansion is uniformly valid for 0 ≤ t ≤ O (1/ε).

3.1.3 Discussion

1. Many problems have the O(1) equation as

y′′0 + ω2y0 = 0.

and the general solution is

y0(t) = a cos(ωt) + b sin(ωt).

If the original problem is nonlinear and the O(1) equation is as above, then it is usually
more convenient to use a complex representation of y0, i.e.

y(t) = Aeiωt + Āe−iωt = B cos (ωt+ θ) .

These complex representations make identify the secular terms much easier.

2. Often, higher-order equations have the form

y′′n + ω2yn = f(t).

A secular term arises if f(t) contains a solution of the O(1) problem, e.g. cos(ωt) or
sin(ωt). We can avoid secular terms by requiring the t2-dependent coefficients of cos(ωt1)
and sin(ωt1) to vanish. For example, there are no secular terms if

f(t) = sin(ωt) cos(ωt) = sin(2ωt)/2,

but there is a secular term if

f(t) = cos3(ωt) =
1

4
(3 cos(ωt) + cos(3ωt)) .

3. The time scales should be modified depending on the problem. Some possibilities include:

(a) Several time-scales: e.g. t1 = t/ε, t2 = t, t3 = εt, . . . .
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(b) More complex ε-dependency:

t1 =
(
1 + ω1ε+ ω2ε

2 + . . .
)︸ ︷︷ ︸

expansion of the effective frequency

t, t2 = εt.

This is called the Lindstedt’s method or the method of strained coordinates.

(c) Correct scaling may not be obvious, so we might start off with

t1 = εαt, t2 = εβt, α < β.

(d) Nonlinear time-dependence:

t1 = f(t, ε), t2 = εt.

3.2 Forced Motion Near Resonance

In this section, we consider an extension of the introductory example: a dampled nonlinear
oscillator that is forced at a frequency near resonance. As an example, we will study the
damped Duffing equation

y′′ + ελy′ + y + εκy3 = ε cos
(

(1 + εω)t
)

for t > 0 (3.2.1a)

y(0) = 0, y′(0) = 0. (3.2.1b)

The damping term ελy′, nonlinear correction term εκy3 and forcing term ε cos
(

(1 + εω)t
)

are

small. Also, ω, λ, κ are constants with λ and κ nonnegative. We expect the solution to be
small due to the small forcing and zero initial conditions.

Consider the simpler equation

y′′ + y = ε cos(Ωt), Ω 6= ±1, y(0) = y′(0) = 0. (3.2.2)

The unique solution is

y(t) =
ε

1− Ω2

[
cos(Ωt)− cos(t)

]
(3.2.3)

and the solution blows up as expected when the driving frequency Ω ≈ 1. To understand the
situation, suppose Ω = 1 + εω. The particular solution of (3.2.2) is given by

yp(t) =


− 1

ω(2 + εω)
cos
(

(1 + εω)t
)

if ω 6= 0,−2/ε,

1

2
εt sin(t) otherwise.

(3.2.4)

In both cases a relatively small, order O(ε), forcing results in at least an O(1) solution. More-
over, the behaviour of the solution depends on ω, which is typical of a forcing system.

We take t1 = t and t2 = εt, although we should take t2 = εαt, α > 0 in general to allow for
some flexibility. The forced Duffing equation becomes[

∂2
t1

+ 2ε∂t1∂t2 + ε2∂2
t2

]
y + ελ

[
∂t1 + ε∂t2

]
y + y + εκy3 = ε cos (t1 + εωt1) . (3.2.5)
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Although we expect the leading-order term in the expansion to be O(ε), the solution can
become larger near a resonant frequency. Because it is not clear what amplitude the solution
actually reaches, we guess a general asymptotic expansion of the form

y ∼ εβy0(t1, t2) + εγy1(t1, t2) + . . . , β < γ. (3.2.6)

We also assume that β < 1 due to the resonance effect. Substituting (3.2.6) into (3.2.5) gives[
εβ∂2

t1
y0 + 2ε1+β∂t1∂t2y0︸ ︷︷ ︸

4

+ εγ∂2
t1
y1︸ ︷︷ ︸

1

+ . . .
]

+
[
ε1+βλ∂t1y0︸ ︷︷ ︸

2

+ . . .
]

+
[
εβy0 + εγy1︸︷︷︸

1

+ . . .
]

+
[
ε1+3βκy3

0︸ ︷︷ ︸
2

+ . . .
]

= ε cos (t1 + εwt1)︸ ︷︷ ︸
3

.

The O(εβ) problem is (
∂2
t1

+ 1
)
y0 = 0,

y0(0, 0) = ∂t1y0(0, 0) = 0,

and its general solution is

y0 = A(t2) cos(t1 + θ(t2)),

with A(0) = 0.

We need to determine β and γ before proceed any further. The terms 2 concern with the

preceeding solution y0 and the term 3 is the forcing term. For the most complete approxima-
tion, the problem for the second term y1 in the expansion (3.2.6), which comes from the terms
1 , must deal with both 2 and 3 . This is possible if we choose γ = 1 and β = 0. The O(ε)

equation in(
∂2
t1

+ 1
)
y1 = −2∂t1∂t2y0 − λ∂t1y0 − κy3

0 + cos(t1 + ωt2)

=
[
2A′ + λA

]
sin(t1 + θ) + 2θ′A cos(t1 + θ)

− κ

4
A3
[
3 cos(t1 + θ) + cos

(
3(t1 + θ)

)]
+ cos(t1 + ωt2).

Note that

cos(t1 + ωt2) = cos(t1 + θ − θ + ωt2)

= cos(t1 + θ) cos(θ − ωt2) + sin(t1 + θ) sin(θ − ωt2).

Thus, we can remove the secular terms sin(t1 + θ) and cos(t1 + θ) by requiring

2A′ + λA = − sin(θ − ωt2) (3.2.7a)

2θ′A− 3κ

4
A3 = − cos(θ − ωt2). (3.2.7b)

From A(0) = 0 and assuming A′(0) > 0, it follows that θ(0) = −π/2.
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Figure 3.2: Nullcline for φτ . (a) F (r, β) as a function of r with varying β. (b) Nullcline for φτ
with varying β. Parameter are given by γ = 0.75 and β = −βc, βc/2, βc, 1.5βc, respectively.

It remains to solve (3.2.7) with initial conditions A(0) = 0, θ(0) = −π/2 to find the ampli-
tude function A(t2) and phase function θ(t2). For the analytic simplicity, changing variables
as r =

√
κA/2 and φ = θ − wt2 gives{

2r′ = −λr − γ
2

sinφ,

2φ′ = β + 3r2 − γ
2r

cosφ.
(3.2.8)

where γ =
√
κ and β = −2ω. We now analyze the rewritten amplitude equation (3.2.8). The

nullcline for rτ is r = −γ sin θ/2λ. Similarly, nullcline for φτ is given by cos θ = 2r(β+3r2)/γ ≡
F (r, β), see Fig. 3.2:

• If β > 0, there is unique r for each θ, see the blue line.

• If 0 > β > βc where minr F (r, βc) = −1 (and it turns out that β3
c = −81γ2/16), then

there are two values of r for each cos θ in some interval (−z, 0) for some z ∈ [0, 1]. See
the red line.

• If β < βc, then two values of r exist for all cos θ between −1 and 0. See the purple line.

For 0 > β > βc, then the non-trivial fixed point (FB) stability of (3.2.8) with varying the
nullcline rτ for λ ≥ 0 is the following, see Fig. 3.3:

• For small λ, only one stable fixed point, see the curve A intersecting with the red line.

B,C If λ = λ1C , there is a SN bifurcation, that is, saddle and a stable FP. See the curve B
and B intersecting with the red line.

• At λ = λ2C , there is a second SN bifurcation in which saddle and other stable FP (from
A) annihilate leaning the stable FP (from B). See the curve D and E intersecting with
the red line.
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Figure 3.3: Non-trivial fixed points as a function of λ and its bifurcation diagram. (a) Inter-
sections of nullcline φτ and rτ with varying λ. (b) Bifurcation diagram of fixed radius rFP as
a function of λ.

3.3 Periodically Forced Nonlinear Oscillators

This section is taken from [Bre14, Chapter 1.2] and [PRK03, Chapter 7.1]. Consider a general
model of a nonlinear oscillator

du

dt
= f(u), u = (u1, . . . , uM) , with M ≥ 2. (3.3.1)

For example, u1 might represents the membrane potential of the neuron (treated as a point
processor) and u2, . . . ,uM represent various ionic channel gating variables. Suppose there exists
a stable periodic solution U(t) = U (t+ ∆0), where ω0 = 2π/∆0 is the natural frequency of the
oscillator. In phase space, the solution is an isolated attractive trajectory called a limit cycle.
The dynamics on the limit cycle can be described by a uniformly rotating phase, i.e.

dφ

dt
= ω0 and U(t) = g(φ(t)), (3.3.2)

with g a 2π-periodic function. The phase φ should be viewed as a coordinate along the limit
cycle, such that it grows monotonically in the direction of the motion and gains 2π during each
rotation. Note that the phase is neutrally stable with respect to perturbations along the limit
cycle - this reflects the time-shift invariance of an autonomous dynamical system. On the limit
cycle, the time shift ∆t is equivalent to the phase shift ∆φ = ω0∆t. Now, suppose that a small
external periodic input is applied to the oscillator such that

du

dt
= f(u) + εP (u, t), (3.3.3)

where P (u, t) = P (u, t + ∆) with ω = 2π/∆ the forcing frequency. If the amplitude ε is
sufficiently small and the cycle is stable, then the resulting deviations transverse to the limit
cycle are small so that the main effect of the perturbation is a phase-shift along the limit cycle.
This suggests a description of the perturbed dynamics with the phase variable only. Therefore,
we need to extend the definition of phase to a neighbourhood of the limit cycle.
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3.3.1 Isochrones

Roughly speaking, the idea is to define the phase variable in such a way that it rotates uniformly
on the limit cycle as well as its neighbourhood. Suppose that we observe the unperturbed
system stroboscopically at time intervals of length ∆0. This leads to a Poincaré mapping

u(t) −→ u(t+ ∆0) ≡ G(u(t)).

The map G has all points on the limit cycle as fixed points. Choose a point U ∗ on the limit
cycle and consider all points in a neighbourhood of U ∗ in RM that are attracted to it under the
action of Φ. They form an (M − 1)-dimensional hypersurface I, called an isochrone, crossing
the limit cycle at U ∗. A unique isochrone can be drawn through each point on the limit cycle
so we can parameterise the isochrones by the phase φ, i.e. I = I(φ). Finally, we extend the
definition of phase to the vicinity of the limit cycle by taking all points u ∈ I(φ) to have the
same phase, Φ(u) = φ, which then rotates at the natural frequency ω0 (in the unperturbed
case).

Example 3.3.1. Consider the following complex amplitude equation that arises for a limit
cycle oscillator close to a Hopf bifurcation:

dA

dt
= (1 + iη)A− (1 + iα)|A|2, A ∈ C.

In polar coordinates A = Reiθ, we have

dR

dt
= R(1−R2)

dθ

dt
= η − αR2.

Observe that the origin is unstable and the unit circle is a stable limit cycle. The solution for
arbitrary initial data R(0) = R0, θ(0) = θ0 is

R(t) =

[
1 +

(
1−R2

0

R0

)
e−2t

]−1/2

θ(t) = θ0 + ω0t−
α

2
ln
[
R2

0 + (1−R2
0)e−2t

]
,

where ω0 = η − α is the natural frequency of the stable limit cycle at R = 1. Strobing the
solution at time t = n∆0, we see that

lim
n→∞

θ(n∆0) = θ0 − α lnR0.

Hence, we can define a phase on the whole plane as

Φ(R, θ) = θ − α lnR

and the isochrones are the lines of constant phase Φ, which are logarithmic spirals on the (R, θ)
plane. We verify that this phase rotates uniformly:

dΦ

dt
=
dθ

dt
− α

R

dR

dt
= η − αR2 − α(1−R2) = η − α = ω0.

It seems like the angle variable θ can be taken to be the phase variable Φ since it rotates
with a constant angular velocity ω0. However, if the initial amplitude deviates from unity, an
additional phase shift occurs due to the term proportional to α in the θ̇-equation. It can be
seen from θ(t) and R(t) that the additional phase shift is −α lnR0.



64 3.3. Periodically Forced Nonlinear Oscillators

3.3.2 Phase equation

For an unperturbed oscillator in the vicinity of the limit cycle, we have from (3.3.1) and (3.3.2)

ω0 =
dΦ(u)

dt
=

M∑
k=1

∂Φ

∂uk

duk
dt

=
M∑
k=1

∂Φ

∂uk
fk(u).

Now consider the perturbed system (3.3.3) but with the “’unperturbed” definition of the phase:

dΦ(u)

dt
=

M∑
k=1

∂Φ

∂uk

(
fk(u) + εPk(u, t)

)
= ω0 + ε

M∑
k=1

∂Φ

∂uk
Pk(u, t).

Because the sum is O(ε) and the deviations of u from the limit cycle U are small, to a
first approximation, we can neglect these deviations and calculate the sum on the limit cycle.
Consequently,

dΦ(u)

dt
= ω0 + ε

M∑
k=1

∂Φ(U)

∂uk
Pk(U , t).

Finally, since points on the limit cycle are in one-to-one correspondence with the phase θ, we
obtain the closed phase equation

dφ

dt
= ω0 + εQ(φ, t), (3.3.4)

where

Q(φ, t) =
M∑
k=1

∂Φ(U(φ))

∂uk
Pk(U(φ), t) (3.3.5)

is a 2π-periodic function of φ and a ∆-periodic function of t. The phase equation (3.3.4) de-
scribes the dynamics of the phase of a periodic oscillator in the presence of a small periodic
external force and Q(φ, t) contains all the information of the dynamical system. This is known
as the phase reduction method.

Example 3.3.2. Returning to Example 3.3.1, the system in Cartesian coordinate is

dx

dt
= x− ηy −

(
x2 + y2

)
(x− ηy) + ε cos(ωt)

dy

dt
= y + ηy −

(
x2 + y2

)
(y + αx)

where we periodically force the nonlinear oscillator in the x-direction. The isochrone is given
by

Φ = arctan
(y
x

)
− α

2
ln
(
x2 + y2

)
,

and differentiating with respect to x yields

∂Φ

∂x
= − y

x2 + y2
− αx

x2 + y2
.
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On the limit cycle u0 = (x0, y0) = (cosφ, sinφ), we have

∂Φ

∂x
(u0(φ)) = − sinφ− α cosφ.

It follows that the corresponding phase equation is

dφ

dt
= ω0 − ε (α cosφ+ sinφ) cos(ωt).

3.3.3 Phase resetting curves

In neuroscience, the function Q(φ, t) can be related to an easily measurable property of a neural
oscillator, namely its phase resetting curves (PRC). Let us denote this by a 2π-periodic
function R(φ). For a neural oscillator, the PRC is found experimentally by perturbing the
oscillator with an impulse at different times in its cycle and measuring the resulting phase shift
from the unperturbed oscillator. Suppose we perturb u1, it follows from (3.3.4) that

dφ

dt
= ω0 + ε

(
∂Φ(U(φ))

∂u1

)
δ(t− t0).

Integrating over a small interval around t0, we see that the impulse induces a phase shift
∆φ = εR(φ0), where

R(φ) =
∂Φ(U(φ))

∂u1

and φ0 = φ(t0).

Given the phase resetting curve R(φ), a general time-dependent voltage perturbation εP (t) is
determined by the phase equation

dφ

dt
= ω0 + εR(φ)P (t) = ω0 + εQ(φ, t).

We can also express the PRC in terms of the firing times of a neuron. Let T n be the nth
firing time of the neuron. Consider the phase φ = 0. In the absence of perturbation, we have
φ(t) = 2πt/∆0 so the firing times are T n = n∆0. On the other hand, a small perturbation
applied at the point φ on the limit cycle at time t ∈ (T n, T n+1), induces a phase shift that
changes the next firing time. Depending on the type of neurons, the impulse either advance or
delay the onset of the next spike. Oscillators with a strictly positive PRC R(φ) are called type
I, whereas those for which the PRC has a negative regime are called type II.

3.3.4 Averaging theory

In the zero-order approximation, i.e. ε = 0, the phase equation (3.3.4) gives rise to φ(t) =
φ0 + ω0t. Since Q(φ, t) is 2π-periodic in φ and ∆-periodic in t, we expand Q(φ, t) as a double
Fourier series

Q(φ, t) =
∑
l,k

al,ke
ikφ+ilωt

=
∑
l,k

al,ke
ikφ0ei(kω0+lω)t,
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where ω = 2π/∆. Thus Q contains fast oscillating terms (compared to the time scale 1/ε)
together with slowly varying terms, the latter satisfy the resonance condition

kω0 + lω ≈ 0.

Substituting this double Fourier series into the phase equation (3.3.4), we see that the fast
oscillating terms lead to O(ε) phase deviations, while the resonant terms can lead to large
variations of the phase and are mostly important for the dynamics. Thus we have to average
the forcing term Q keeping only the resonant terms. We now identify the resonant terms using
the resonance condition above:

1. The simplest case is ω ≈ ω0 for which the resonant terms satisfy l = −k. This results in
an averaged forcing

Q(φ, t) ≈
∑
k

a−k,ke
ik(φ−ωt) = q(φ− ωt)

and the phase equation becomes

dφ

dt
= ω0 + εq(φ− ωt).

Introducing the phase difference ψ = φ − ωt between the oscillator and external input,
we obtain

dψ

dt
= −∆ω + εq(ψ),

where ∆ω = ω − ω0 is the degree of frequency detuning.

2. The other case is ω ≈ mω0/n, where m and n are coprime. The forcing term becomes

Q(φ, t) ≈
∑
k

a−nk,mke
ik(mφ−nωt) = q̂(mφ− nωt)

and the phase equation has the form

dφ

dt
= ω0 + εq̂(mφ− nωt).

Introducing the phase difference ψ = mφ− nωt, we obtain

dψ

dt
= mω0 − nω + εmq̂(ψ),

where the frequency detuning is ∆ω = nω − nω0 instead.

The above analysis is an application of the averaging theorem. Assuming ∆ω = ω − ω0 =
O(ε) and setting ψ = φ− ωt, we have

dψ

dt
= −∆ω + εQ(ψ + ωt, t) = O(ε).

Define

q(ψ) = lim
T−→∞

1

T

∫ T

0

Q(ψ + ωt, t) dt,
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and consider the averaged equation

dψ̄

dt
= −∆ω + εq(ψ̄),

where q only contains the resonant terms of Q as above. The averaging theorem guarantees
that there exists a change of variable ψ = ψ̄+ εw(ϕ, t) that maps solutions of the full equation
to those of the averaged equation to leading order in ε. In general, one can only establish that
a solution of the full equation is ε-close to a corresponding solution of the average equation for
times of O(1/ε), i.e.

sup
t∈I

∣∣ψ(t)− ψ̄(t)
∣∣ ≤ Cε.

3.3.5 Phase-locking and synchronisation

We now discuss the solutions of the averaged phase equation

dψ

dt
= −∆ω + εq(ψ). (3.3.6)

Suppose that the 2π-periodic function q(ψ) has a unique maximum qmax and a unique minimum
qmin. The fixed points ψ∗ of (3.3.6) satisfy εq(ψ∗) = ∆ω.

1. Synchronisation regime
If the degree of detuning is sufficiently small, in the sense that

εqmin < ∆ω < εqmax,

then there exists at least one pair of stable/unstable fixed points (ψs, ψu). (This follows
from the fact that q(ψ) is 2π-periodic and continuous so it has to cross any horizontal
line an even number of times.) The system then evolves to the solution φ(t) = ωt + ψs
and this is the phase-locked synchronise state. The oscillator is also said to be frequency
entrained, meaning that the frequency of the oscillator coincides with that of the external
force.

2. Drift regime
Increasing |∆ω| means that ψs, ψu coalesce at a saddle point, beyond which there are
no fixed points. This results in a saddle-node bifurcation and phase-locking disappears.
If |∆ω is large, then ψ̇ never changes sign and the oscillation frequency differs from the
forcing frequency. The phase ψ(t) rotates through 2π with period

Tψ =

∣∣∣∣∫ 2π

0

dψ

εq(ψ)−∆ω

∣∣∣∣ .
The mean frequency of rotation is thus Ω = ω + Ωψ, where Ωψ = 2π/Tψ is the beat
frequency.

For a fixed ε, suppose that ∆ω is close to one of the bifurcation point ∆ωmax := εqmax.
The integral in Tψ is dominated by a small region around ψmax and expanding q(ψ)
around ψmax yields

Ωψ ≈ 2π

∣∣∣∣∫ ∞
−∞

dψ

εq′′(ψmax)ψ2 − (∆ω −∆ωmax)

∣∣∣∣−1

=
√
ε|q′′(ψmax)|(∆ω −∆ωmax) = O(

√
ε)
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3.3.6 Phase reduction for networks of coupled oscillators

We extend the analysis to a network of N coupled oscillators. Let ui ∈ RM , i = 1, . . . , N
denote the state of the ith oscillator. The general model can be written as

dui
dt

= f(ui) + ε

N∑
j=1

aijH(uj), i = 1, . . . , N, (3.3.7)

where the first term represents the local autonomous dynamics and the second term describes
the interaction between oscillators. In a similar fashion to a single periodically forced oscillator,
we can write down the phase equation:

dφi(ui)

dt
= ω0 + ε

(
∂φi
∂ui

)
·

(
N∑
j=1

aijH(uj)

)
, i = 1, . . . , N. (3.3.8)

Since the limit cycle is uniquely defined by phase,

dφi
dt

= ω0 + ε
N∑
j=1

aijQi(φi, φj), i = 1, . . . , N, (3.3.9)

where

Qi(φi, φj) =
∂φi
∂ui

(U(φi)) ·H(U(φj)). (3.3.10)

The final step is to use the method of averaging to obtain the phase-difference equation.
Introducing ψi = φi − ω0t, we obtain

dψi
dt

= ε
N∑
j=1

aijQi (ψi + ω0t, ψj + ω0t) .

Upon averaging over one period, we obtain

dψi
dt

= ε
N∑
j=1

aijh(ψj − ψi), (3.3.11)

where

h(ψj − ψi) =
1

∆0

∫ ∆0

0

R(ψi + ω0t) ·

(
N∑
j=1

H(U(ψj + ω0t))

)
dt

=
1

2π

∫ 2π

0

R(φ+ ψi − ψj) ·

(
N∑
j=1

H(U(φ))

)
dφ,

with φ = ψj + ω0t. Here, R is the phase resetting curve.
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Phase-locked solutions

We define a one-to-one phase-locked solutions to be

ψi(t) = t∆w + ψi, (3.3.12)

where ψi is constant. Taking time derivative on (3.3.12) and imposing (3.3.11) yields

∆ω = ε
N∑
j=1

aijh
(
ψj − ψi

)
, i = 1, . . . , N. (3.3.13)

Since we have N equations in N unknowns ∆ω and N − 1 phases ψj − ψ1, then one can find
the phase-locked solutions (We only care about phase difference.)

Stability

In order to determine local stability, we set

ψi(t) = ψi + t∆ω + ∆ψi(t). (3.3.14)

To linearize it, taking time derivative on (3.3.14) and imposing the phase-locked solutions
(3.3.13) gives

d∆ψi
dt

= ε
N∑
j=1

Ĥij (Φ) ∆ψj, (3.3.15)

where Φ =
(
ψ̄1, . . . ψ̄N

)
and

Ĥij (Φ) = aijh
(
ψj − ψi

)
− δij

∑
k

aikh
(
ψk − ψi

)
. (3.3.16)

Pair of identical oscillators

For example, we assume thatN = 2 and symmetric coupling, that is a12 = a21 and a11 = a22 = 0
(no self-interaction). Let ψ = ψ2 − ψ1. Then (3.3.11) turns out to be

dψ

dt
= εH−(ψ),

where H−1(ψ) = h(−ψ)− h(ψ). Imposing the assumption on (3.3.13) implies that the phase-
locked states are given by zeros of the odd function, H−(ψ) = 0. Furthermore, it is stable
if

ε
dH−(ψ)

dψ
< 0.

By symmetry and periodicity, the in-phase solution ψ = 0 and anti-phase solution ψ = π are
guaranteed to exist.

3.4 Partial Differential Equations

In this section, we apply the method of multiple scales to the linear wave equation and the
nonlinear Klein-Gordon equation.
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3.4.1 Elastic string with weak damping

Consider the one-dimensional wave equation with weak damping:

∂2
xu = ∂2

t u+ ε∂tu, 0 < x < 1, t > 0, (3.4.1a)

u = 0 at x = 0 and x = 1, (3.4.1b)

u(x, 0) = g(x), ∂tu(x, 0) = 0. (3.4.1c)

Similar to the weakly damped oscillator, we introduce two separate time scales t1 = t, t2 = εt.
In this case, (3.4.1) becomes

∂2
xu =

[
∂2
t1

+ 2ε∂t1∂t2 + ε2∂2
t2

]
u+ ε

[
∂t1 + ε∂t2

]
u, (3.4.2a)

u = 0 at x = 0 and x = 1, (3.4.2b)

u(x, 0) = g(x),
[
∂t1 + ε∂t2

]
u

∣∣∣∣
t1=t2=0

= 0. (3.4.2c)

As before, the solution of (3.4.2) is not unique and we will use this degree of freedom to
eliminate the secular terms.

We try a regular asymptotic expansion of the form

u ∼ u0(x, t1, t2) + εu1(x, t1, t2) + . . . as ε −→ 0. (3.4.3)

The O(1) problem is

∂2
xu0 = ∂2

t1
u0, (3.4.4a)

u0(x, 0, 0) = g(x), ∂t1u0(x, 0, 0) = 0. (3.4.4b)

Separation of variables yields the general solution

u0(x, t1, t2) =
∞∑
n=1

[an(t2) sin(λnt1) + bn(t2) cos(λnt1)] sin(λnx), λn = nπ. (3.4.5)

The initial conditions will be imposed once we determine an(t2) and bn(t2). The O(ε) equation
is

∂2
xu1 = ∂2

t1
u1 + 2∂t1∂t2u0 + ∂t1u0

= ∂2
t1
u1 +

∞∑
n=1

An(t1, t2) sin(λnx), (3.4.6)

where
An = (2a′n + an)λn cos(λnt1)− (2b′n + bn)λn sin(λnt1).

Given the zero boundary conditions in (3.4.1), it is appropriate to introduce the Fourier ex-
pansion

u1 =
∞∑
n=1

Vn(t1, t2) sin(λnx).

Substituting this into (3.4.7) together with the expression of An, we obtain

∂2
t1
Vn + λ2

nVn = − (2a′n + an)λn cos(λnt1) + (2b′n + bn)λn sin(λnt1).



Method of Multiple Scales 71

The secular terms are eliminated provided

2a′n + an = 0, 2b′n + bn = 0,

and these have general solutions of the form

an(t2) = an(0)e−t2/2, bn(t2) = bn(0)e−t2/2.

Finally, a first term approximation of the solution of (3.4.1) is

u(x, t) ∼
∞∑
n=1

[
an(0)e−εt/2 sin(λnt) + bn(0)e−εt/2 cos(λnt)

]
sin(λnx), λn = nπ. (3.4.7)

Applying the initial condition in (3.4.4), we find that an(0) = 0 and

bn(0) = 2

∫ 1

0

g(x) sin(λnx) dx.

3.4.2 Nonlinear wave equation

Consider the nonlinear Klein-Gordon equation

∂2
xu = ∂2

t u+ u+ εu3, −∞ < x <∞, t > 0, (3.4.8a)

u(x, 0) = F (x), ∂tu(x, 0) = G(x). (3.4.8b)

It describes the motion of a string on an elastic foundation as well as the waves in a cold
electron plasma.

As usual, let us consider (3.4.8) with ε = 0:

∂2
xu = ∂2

t u+ u, −∞ < x <∞, t > 0, (3.4.9a)

u(x, 0) = F (x), ∂tu(x, 0) = G(x). (3.4.9b)

We guess a solution of the form exp
(
i(kx− ωt)

)
. This yields the dispersion relation

−k2 = −ω2 + 1 =⇒ ω = ±
√

1 + k2 = ±ω(k).

We may solve (3.4.9) using the spatial Fourier transform

û(k, t) =

∫ ∞
−∞

u(x, t)e−ikx dx.

This produces an ODE for û(k, t):

−k2û = ∂ttû+ û, (3.4.10a)

û(k, 0) = F̂ (k), ∂tû(k, 0) = Ĝ(k). (3.4.10b)

Solving (3.4.10) and applying the inverse Fourier transform we obtain the general solution of
(3.4.9):

u(x, t) =

∫ ∞
−∞

A(k)ei(kx−ω(k)t) dk +

∫ ∞
−∞

B(k)ei(kx+ω(k)t dk, (3.4.11)
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where A(k) and B(k) are determined from the initial conditions in (3.4.10). This shows that
the solution of (3.4.9) can be written as the superposition of the plane wave solutions u±(x, t) =

exp
(
i(kx+ ω(k)t)

)
. We would like to investigate how the nonlinearity affects a right-moving

plane wave u(x, t) = cos(kx− ωt), where k > 0 and ω =
√

1 + k2.
A regular asymptotic expansion of the form

u(x, t) ∼ w0(kx− ωt) + εw1(x, t) + . . .

will lead to secular terms, and thus we use multiple scales to find an asymptotic approximation
of the solution of (3.4.8). We take three independent variables

θ = kx− ωt, x2 = εx, t2 = εt.

The spatial and time derivatives become

∂

∂x
−→ k

∂

∂θ
+ ε

∂

∂x2

,
∂

∂t
−→ −ω ∂

∂θ
+ ε

∂

∂t2
.

Consequently, the nonlinear Klein-Gordon equation becomes[
k∂θ + ε∂x2

]2

u =
[
− ∂θ + ε∂t2

]2

u+ u+ εu3[
k2 − ω2

]
∂2
θu+ 2εk∂x2∂θu+ 2εω∂t2∂θu = u+ εu3 +O(ε2)u[

∂2
θ − 2ε

(
k∂x2 + ω∂t2

)
∂θ +O(ε2)

]
u+ u+ εu3 = 0, (3.4.12)

where we use the dispersion relation −k2 = −ω2+1. We assume a regular asymptotic expansion
of the form

u(x, t) ∼ u0(θ, x2, t2) + εu1(θ, x2, t2) + . . . .

The O(1) equation is (
∂2
θ + 1

)
u0 = 0,

and the general solution of this problem is

u0 = A(x2, t2) cos
(
θ + φ(x2, t2)

)
.

The O(ε) equation is(
∂2
θ + 1

)
u1 = 2 (k∂x2 + ω∂t2) ∂θu0 − u3

0

= −2
[

(k∂x2 + ω∂t2)A
]

sin(θ + φ)− 1

4
A3 cos

(
3(θ + φ)

)
− 2
[

(k∂x2 + ω∂t2)φ+
3

8
A2
]
A cos(θ + φ).

The secular terms are eliminated provided

(k∂x2 + ω∂t2)A = 0 (3.4.13a)

(k∂x2 + ω∂t2)φ+
3

8
A2 = 0. (3.4.13b)
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These constitute the amplitude-phase equations and can be solved using characteristic
coordinates. Specifically, let

r = ωx2 + kt2 and s = ωx2 − kt2.

With this (3.4.13) simplifies to

∂rA = 0

∂rφ = − 3

16ωk
A2

and solving this yields

A = A(s) and φ = − 3

16ωk
A2r + φ0(s).

Hence, a first term approximation of the solution of (3.4.8) is

u ∼ A(wx2 − kt2) cos

[
(kx− ωt)− 3

16ωk
(ωx2 + kt2)A2 + φ0(ωx2 − kt2)

]
. (3.4.14)

We can now attempt to answer our main question: how does the nonlinearity affects the
plane wave solution? Consider the plane wave initial conditions

u(x, 0) = α cos(kx) and ∂tu(x, 0) = αω sin(kx).

In multiple scale expansion, these translates to

u0(θ, x2, 0) = α cos(θ) and ∂θu0(θ, x2, 0) = −α sin(θ).

Imposing these initial conditions on (3.4.14) we obtain

A(ωx2) = α and φ0(ωx2) =
3

16k
A2x2.

Thus, a first term approximation of the solution of (3.4.8) in this case is

u(x, t) ∼ α cos

(
kx−

(
1 +

3εα2

16ω2

)
ωt

)
∼ α cos(kx− ω̂t).

We see that the nonlinearity increases the phase velocity since it increases from c = ω/k to
c = ω̂/k.

3.5 Pattern Formation and Amplitude Equations

3.5.1 Neural field equations on a ring

Consider a population of neurons distributed on the circle S1 = [0, π]:

∂a

∂t
= −a(θ, t) +

1

π

∫ π

0

w(θ − θ′)f(a(θ′, t)) dθ′ (3.5.1a)
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f(a) =
1

1 + exp(−η(a− k))
, (3.5.1b)

where a(θ, t) denotes the activity at time t of a local population of cells at position θ ∈ [0, π),
w(θ−θ′) is the strength of synaptic weights between cells at θ′ and θ and the firing rate function
f is a sigmoid function. Assuming w is an even π-periodic function, it can be expanded as a
Fourier series:

w(θ) = W0 + 2
∑
n≥1

Wn cos(2πθ), Wn ∈ R. (3.5.2)

Suppose there exists a uniform equilibrium solution ā of (3.5.1), satisfying

ā = f(ā)

∫ π

0

w(θ − θ′)
π

dθ′ = f(ā)W0. (3.5.3)

The stability of the equilibrium solution is determined by setting a(θ, t) = ā + a(θ)eλt and
linearising (3.5.1) about ā. Expanding f around ā yields

f(ā+ a(θ)eλt) ≈ f(ā) + f ′(ā)a(θ)eλt,

and we obtain the eigenvalue equation

λa(θ) = −a(θ) +
f ′(ā)

π

∫ π

0

w(θ − θ′)a(θ′) dθ′ = La(θ). (3.5.4)

Since the linear operator L is compact on L2(S1), it has a discrete spectrum with eigenvalues

λn = −1 + f ′(ā)Wn, n ∈ Z,

and corresponding eigenfunctions

an(θ) = zne
2inθ + z∗ne

−2inθ.

These are obtained by integrating the eigenvalue equation against cos(2nθ) over [0, π]: CHT:

Check this again, unsure about this

λnan = −an +
f ′(ā)

π

∫ π

0

(∫ π

0

w(θ − θ′)a(θ′) dθ′
)

cos(2nθ) dθ

= −an +
f ′(ā)

π

∫ π

0

a(θ′)

(∫ π

0

∑
m∈Z

Wm cos(2m(θ − θ′)) cos(2nθ) dθ

)
dθ′

= −an +
f ′(ā)

π

∑
m∈Z

∫ π

0

Wma(θ′) cos(2nθ′) dθ′
∫ π

0

cos(2mθ) cos(2nθ) + sin(2mθ) cos(2nθ) dθ

= −an +
f ′(ā)

π

∑
m∈Z

Wmam

[π
2
δ±m,n

]
= −an +

f ′(ā)

2

[
Wnan +W−na−n

]
= −an + f ′(ā)Wnan,

where

an =

∫ π

0

a(θ) cos(2nθ) dθ = a−n.
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The eigenvalue expression reveals the bifurcation parameter µ = f ′(ā). For sufficiently
small µ, corresponding to a low activity state, λn < 0 for all n and the fixed point is stable.
As µ increases beyond a critical value µc, the fixed point becomes unstable due to excitation
of the eigenfunctions associated with the largest Fourier component of w(θ). Suppose that
W1 = maxmWm. Then λn > 0 for all n if and only if

1 < µWn ≤ µW1 =⇒ µ >
1

W1

= µc.

Consequently, for µ > µc, the excited modes will be

a(θ) = ze2iθ + z̄e−2iθ = 2|z| cos(2(θ − θ0)),

where z = |z|e−2iθ0 . We expect this mode to grow and stop at a maximum amplitude as µ
approaches µc, mainly because of the saturation of f .

3.5.2 Derivation of amplitude equation using the Fredholm alterna-
tive

Unfortunately, the linear stability analysis breaks down for large amplitude of the activity
profile. Suppose the system is just above the bifurcation point, i.e.

µ− µc = ε∆µ, 0 < ε� 1 (3.5.5)

If ∆µ = O(1), then µ − µc = O(ε) and we can carry out a perturbation expansion in powers
of ε. We first Taylor expand the nonlinear function f around a = ā:

f(a)− f(ā) = µ(a− ā) + g2(a− ā)2 + g3(a− ā)3 +O(a− ā)4. (3.5.6)

Assume a perturbation expansion of the form

a = ā+
√
εa1 + εa2 + ε3/2a3 + . . . . (3.5.7)

The dominant temporal behaviour just beyond bifurcation is the slow growth of the excited
mode eε∆µt and this motivates the introduction of a slow time scale τ = εt. Substituting
(3.5.5), (3.5.6) and (3.5.7) into (3.5.1) yields[

∂t + ε∂τ

][
ā+
√
εa1 + εa2 + ε3/2a3 + . . .

]
= −

[
ā+
√
εa1 + εa2 + ε3/2a3 + . . .

]
+

1

π

∫ π

0

w(θ − θ′)f(ā) dθ′

+
1

π

∫ π

0

w(θ − θ′)
(
µc + ε∆µ

)[√
εa1 + εa2 + ε3/2a3 + . . .

]
dθ′

+
1

π

∫ π

0

w(θ − θ′)g2

[√
εa1 + εa2 + . . .

]2

dθ′

+
1

π

∫ π

0

w(θ − θ′)g3

[√
εa1 + εa2 + . . .

]3

dθ′
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Define the linear operator L̂:

La(θ) = −a(θ) +
µc
π

∫ π

0

w(θ − θ′)a(θ′) dθ′ = −a(θ) + µcw ∗ a(θ).

Collecting terms with equal powers of ε then leads to a hierarchy of equations of the form:

ā = W0f(ā)

L̂a1 = 0

L̂a2 = V2 := −g2w ∗ a2
1

L̂a3 = V3 :=
∂a1

∂τ
−∆µw ∗ a1 − 2g2w ∗ (a1a2)− g3w ∗ a3

1.

The O(1) equation determines the fixed point ā. The O(
√
ε) equation has solutions of the

form
a1 = z(τ)e2iθ + z∗(τ)e−2iθ.

A dynamical equation for z(τ) can be obtained by deriving solvability conditions for the higher-
order equations using Fredholm alternative. These equations have the general form

L̂an = Vn(ā, a1, . . . , an−1), n ≥ 2.

For any two periodic functions U, V , define the inner product

〈U, V 〉 =
1

π

∫ π

0

U∗(θ)V (θ) dθ.

Using integration by parts, it is easy to see that L̂ is self-adjoint with respect to this particular
inner product and since L̂ã = 0 for ã = e±2iθ, we have

〈ã, L̂an〉 = 〈L̂ã, an〉 = 0.

Since L̂an = Vn, it follows from the Fredholm alternative that the set of solvability conditions
are

〈ã, Vn〉 = 0 for n ≥ 2.

The O(ε) solvability condition 〈ã, V2〉 = 0 is automatically satisfied. The O(ε3/2) solvability
condition can be expanded into

〈ã, ∂τa1 −∆µw ∗ a1〉 = g3〈ã, w ∗ a3
1〉+ 2g2〈ã, w ∗ (a1a2)〉. (3.5.8)

Taking ã = e2iθ then generates a cubic amplitude for z. First, we have

〈e2iθ, ∂τa1〉 =
1

π

∫ π

0

e−2iθ
(dz
dτ
e2iθ +

dz∗

dτ
e−2iθ

)
dθ =

dz

dτ
(3.5.9)

To deal with the convolution terms, observe that since w is even, for any function b(θ) we have

〈e2iθ, w ∗ b〉 = 〈w ∗ e2iθ, b〉

=
1

π

∫ π

0

(
1

π

∫ π

0

w(θ − θ′)e−2iθ′ dθ′
)
b(θ) dθ
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=
1

π

∫ π

0

(
1

π

∫ π

0

∑
n≥1

2Wn cos(2n(θ − θ′))e−2iθ′ dθ′

)
b(θ) dθ

=
1

π

∫ π

0

(
1

π

∫ π

0

∑
n≥1

Wn

(
e2in(θ−θ′) + e−2in(θ−θ′)

)
e−2iθ′ dθ′

)
b(θ) dθ

=
1

π

∫ π

0

(
1

π
W1e

−2iθ

∫ π

0

dθ′
)
b(θ) dθ

=
1

π

∫ π

0

W1e
−2iθb(θ) dθ

= W1〈e2iθ, b〉.

Set W1 = µ−1
c . From the identity above we then have

〈e2iθ,∆µw ∗ a1〉 = ∆µW1〈e2iθ, a1〉

=
∆µ

µcπ

∫ π

0

∫ π

0

e−2iθ
(
ze2iθ + z∗e−2iθ

)
dθ

= µ−1
c ∆µz (3.5.10)

and

〈e2iθ, w ∗ a3
1〉 = W1〈e2iθ, a3

1〉

=
1

µcπ

∫ π

0

e−2iθ
(
ze2iθ + z∗e−2iθ

)3

dθ

=
1

µcπ

∫ π

0

e−2iθ
(
z3e6iθ + 3z2z∗e2iθ + 3zz∗e−2iθ + (z∗)3e−6iθ

)
dθ

= 3µ−1
c z2z∗ = 3µ−1

c z|z|2. (3.5.11)

The next step is to determine a2. From the O(ε) equation we have

−L̂a2 = a2 −
µc
π

∫ π

0

w(θ − θ′)a2(θ′) dθ′

=
g2

π

∫ π

0

w(θ − θ′)a2
1(θ′) dθ′

=
g2

π

∫ π

0

{
W0 +

∑
n≥1

Wn

(
e2in(θ−θ′) + e−2in(θ−θ′)

)}[
z2e4iθ′ + 2|z|2 + (z∗)2e−4iθ′

]
dθ′

= g2

[
2|z|2W0 + z2W2e

4iθ + (z∗)2W2e
−4iθ
]
. (3.5.12)

Let

a2(θ) = A+e
4iθ + A−e

−4iθ + A0 + ζa1(θ). (3.5.13)

The constant ζ remains undetermined at this order of perturbation but does not appear in the
amplitude equation for z(τ). Substituting (3.5.13) into (3.5.12) yields

A+ =
g2z

2W2

1− µcW2

, A− =
g2(z∗)2W2

1− µcW2

, A0 =
2g2|z|2W0

1− µcW0

. (3.5.14)
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Consequently,

〈e2iθ, w ∗ (a1a2)〉 = W1〈e2iθ, a1a2〉

=
1

µcπ

∫ π

0

e−2iθ
(
ze2iθ + z∗e−2iθ

)(
A+e

4iθ + A−e
−4iθ + A0 + ζa1(θ)

)
dθ

= µ−1
c

[
z∗A+ + zA0

]
= µ−1

c

[
g2z
∗|z|2W2

1− µcW2

+
g2z|z|2W0

1− µcW0

]
(3.5.15)

= z|z|2g2µ
−1
c

[
W2

1− µcW2

+
2W0

1− µcW0

]
. (3.5.16)

Finally, substituting (3.5.9), (3.5.10), (3.5.11) and (3.5.16) into theO(ε3/2) solvability condition
(3.5.8), we obtain the Stuart-Landau equation

dz

dτ
= z(∆µ− Λ|z|2), (3.5.17)

where

Λ = −3g3 − 2g2
2

[
W2

1− µcW2

+
2W0

1− µcW0

]
. (3.5.18)

Note that we also absorbed a factor of µc into τ .

3.6 Problems

1. Find a first-term expansion of the solution of the following problems using two time
scales.

(a) y′′ + ε(y′)3 + y = 0, y(0) = 0, y′(0) = 1.

Solution: We introduce a slow scale τ = εt and an asymptotic expansion

y ∼ y0(t, τ) + εy1(t, τ) + . . . .

The original problem becomes[
∂2
t + 2ε∂t∂τ + ε2∂2

τ

](
y0 + εy1 + . . .

)
+ ε
[[
∂t + ε∂τ

](
y0 + εy1 + . . .

)]3

+
(
y0 + εy1 + . . .

)
= 0,

with boundary conditions (
y0 + εy1 + . . .

)
(0, 0) = 0[

∂t + ε∂τ

](
y0 + εy1 + . . .

)
(0, 0) = 1.
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The O(1) problem is(
∂2
t + 1

)
y0 = 0, y0(0, 0) = ∂ty0(0, 0) = 0, (3.6.1)

and its general solution is

y0(t, τ) = A(τ)eit + A∗(τ)e−it, (3.6.2)

where A(τ) is complex function of τ . The O(ε) equation is(
∂2
t + 1

)
y1 = −2∂t∂τy0 −

(
∂ty0

)3

= −2i
[
Aτe

it − A∗τe−it
]
− (i3)

[
Aeit − A∗e−it

]3

= −2i
[
Aτe

it − A∗τe−it
]

+ i
[
A3e3it − 3A2A∗eit + 3A(A∗)2e−it + (A∗)3e−3it

]
= −i

[
2Aτ + 3A|A|2

]
eit + i

[
2A∗τ + 3A∗|A|2

]
e−it + i

[
A3e3it + (A∗)3e−3it

]
= F (τ)eit + F ∗(τ)e−it + i

[
A3e3it + (A∗)3e−3it

]
.

The secular terms are eliminated provided F (τ) = 0. Writing A(τ) = R(τ)eiθ(τ),
F (τ) becomes

2
(
Rτe

iθ + iRθτe
iθ
)

+ 3ReiθR2 = 0,

or
2
(
Rτ + iRθτ

)
+ 3R3 = 0.

Consequently, we have
θτ = 0 =⇒ θ(τ) = θ0

and

2Rτ + 3R3 = 0 =⇒ 2Rτ

R3
= −3 =⇒ 1

R2
= 3τ + C =⇒ R(τ) =

1√
3τ + C

.

Therefore, (3.6.2) becomes

y0(t, τ) = R(τ)ei(t+θ0) +R(τ)e−i(t+θ0)

= 2R(τ) cos(t+ θ0).

We now impose the initial conditions from (3.6.1):

y0(0, 0) = 0 =⇒ 2R(0) cos(θ0) = 0

∂ty0(0, 0) = 1 =⇒ −2R(0) sin(θ0) = 1,
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which means

R(0)eiθ0 = − i
2

=
1√
C
eiθ0 =⇒ C = 4 and θ0 =

3π

2
.

Hence, a first-term approximation of the solution of the original problem is

y ∼ 2 cos(t+ 3π/2)√
3εt+ 4

∼ 2 sin(t)√
3εt+ 4

.

(b) εy′′ + εκy′ + y + εy3 = 0, y(0) = 0, y′(0) = 1, κ > 0.

Solution: The equation appears to have a boundary layer, but it does not in this
case since ε appears on y′ as well. Let T = t/

√
ε and Y (T ) = y(t) = y(

√
εT ),

then
d

dt
=

1√
ε

d

dT

and the original problem becomes

∂2
TY +

√
εκ∂TY + Y + εY 3 = 0 (3.6.3a)

Y (0) = 0, ∂TY (0) =
√
ε. (3.6.3b)

Since one of the boundary conditions is of O(
√
ε), we take the slow scale to

be τ =
√
εT = t and the fast scale to be T = t/

√
ε. Assuming an asymptotic

expansion of the form

Y ∼ Y0(T, τ) +
√
εY1(T, τ) + . . . . (3.6.4)

Substituting (3.6.4) into (3.6.3) we obtain[
∂2
T + 2

√
ε∂T∂τ + ε∂2

τ

](
Y0 +

√
εY1 + . . .

)
+
√
εκ
[
∂T +

√
ε∂τ

](
Y0 +

√
εY1 + . . .

)
+
(
Y0 +

√
εY1 + . . .

)
+ ε
(
Y0 +

√
εY1 + . . .

)3

= 0,

with boundary conditions (
Y0 +

√
εY1 + . . .

)
(0, 0) = 0[

∂T +
√
ε∂τ

](
Y0 +

√
εY1 + . . .

)
(0, 0) =

√
ε.

The O(1) problem is(
∂2
T + 1

)
Y0 = 0, Y0(0, 0) = ∂TY0(0, 0) = 0,

and its general solution is

Y0(T, τ) = A(τ)eiT + A∗(τ)e−iT .
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The O(
√
ε) equation is(

∂2
T + 1

)
Y1 = −2∂T∂τY0 − κ∂TY0

= −2i
[
Aτe

it − A∗τe−it
]
− κi

[
Aeit − A∗e−it

]
= −i

[
2Aτ + κA

]
eit + i

[
2A∗τ + κA∗

]
e−it

= F (τ)eit + F ∗(τ)e−it.

The secular terms are eliminated provided F (τ) = 0, i.e.

2Aτ + κA = 0 =⇒ A(τ) = A(0)e−κτ/2.

It can be easily seen from the initial conditions of the O(1) problem that A(0) =
0, and so Y0 ≡ 0. Before we proceed any further, note that

Y1(T, τ) = B(τ)eiT +B∗(τ)e−iT .

The O(ε) equation is(
∂2
T + 1

)
Y2 = −2∂T∂τY1 − ∂2

τY0 − κ
(
∂TY1 + ∂τY0

)
− Y 3

0

= −2∂T∂τY1 − κ∂TY1.

This has the same structure as the O(
√
ε) equation and it should be clear then

that the secular terms are eliminated provided

2Bτ + κB = 0 =⇒ B(τ) = B(0)e−κτ/2.

Imposing the initial condition Y1(0, 0) = 0 and (∂TY1+∂τY0)(0, 0) = ∂TY1(0, 0) =
1, we obtain

B(0) +B∗(0) = 0

i
[
B(0)−B∗(0)

]
= 1,

which gives B(0) = −i/2. Hence, the O(
√
ε) solution is

Y1(T, τ) = B(0)e−κτ/2eiT +B∗(0)e−κτ/2e−iT

= e−κτ/2
[
− i

2
eiT +

i

2
e−iT

]
= e−κτ/2 sin(T )

and a first-term approximation of the solution of the original problem is

y(t) = Y (T ) ∼ e−κt/2 sin

(
t√
ε

)
.
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2. In the study of Josephson junctions, the following problem appears

φ′′ + ε (1 + γ cosφ)φ′ + sinφ = εα, φ(0) = 0, φ′(0) = 0, γ > 0. (3.6.5)

Use the method of multiple scales to find a first-term approximation of φ(t).

Solution: With the slow scale τ = εt, (3.6.5) becomes
[
∂2
t + 2ε∂t∂τ + ε2∂2

τ

]
φ+ ε (1 + γ cosφ)

[
∂t + ε∂τ

]
φ+ sinφ = εα,

φ(0, 0) = 0,
[
∂t + ε∂τ

]
φ(0, 0) = 0, γ > 0.

(3.6.6)

Assume an asymptotic expansion of the form

φ ∼ φ0(t, τ) + εφ1(t, τ) + ε2φ2(t, τ) + . . . . (3.6.7)

Substituting (3.6.7) into (3.6.6) and expanding both sin(φ) and cos(φ) around φ = φ0

we obtain:[
∂2
t + 2ε∂t∂τ + ε2∂2

τ

] (
φ0 + εφ1 + ε2φ2 + . . .

)
+ ε
(

1 + γ
[
cosφ0 − sinφ0

(
εφ1 + ε2φ2 + . . .

)] )[
∂t + ε∂τ

] (
φ0 + εφ1 + ε2φ2 + . . .

)
+
[
sinφ0 + cosφ0

(
εφ1 + ε2φ2 + . . .

)]
= εα,

with boundary conditions (
φ0 + εφ1 + ε2φ2 + . . .

)
(0, 0) = 0[

∂t + ε∂τ

] (
φ0 + εφ1 + ε2φ2 + . . .

)
(0, 0) = 0.

The O(1) problem is

∂2
t φ0 + sinφ0 = 0, φ0(0, 0) = 0, ∂tφ0(0, 0) = 0.

To solve this nonlinear problem ,we approximate sinφ0 ≈ φ0 and the general solution
of the problem is approximately

φ0(t, τ) ≈ A(τ) cos(t) +B(τ) sin(t). (3.6.8)

The initial conditions gives A(0) = 0 = B(0).

The O(ε) equation is

∂2
t φ1 + 2∂t∂τφ0 + (1 + γ cosφ0) ∂tφ0 + (cosφ0)φ1 = α,

with boundary conditions

φ1(0, 0) = 0, ∂tφ1(0, 0) = −∂τφ0(0, 0).
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We approximate cosφ0 ≈ 1 and substitute the expression (3.6.8) for φ0:

∂2
t φ1 + φ1 = −2∂t∂τφ0 − (1 + γ) ∂tφ0 + α

= −2 (−A′ sin(t) +B′ cos(t))− (1 + γ) (−A sin t+B cos(t)) + α

= [2A′ + A(1 + γ)] sin(t)− [2B′ +B(1 + γ)] cos(t) + α.

The secular terms are eliminated provided the coefficients of cos(t) and sin(t) vanish.
This yields two initial value problems{

2A′ + A(1 + γ) = 0, A(0) = 0

2B′ +B(1 + γ) = 0, B(0) = 0

which has solutions A(τ) = B(τ) ≡ 0. It follows from (3.6.8) that φ0 ≡ 0 and we
need to investigate the O(ε2) problem. The general solution of the O(ε) problem is

φ1(t, τ) ≈ C(τ) cos(t) +D(τ) sin(t) + α, (3.6.9)

and the initial conditions gives C(0) = −α and D(0) = 0.

The O(ε2) equation is

∂2
t φ2 + 2∂t∂τφ1 + ∂2

τφ0 + (1 + γ cosφ0) (∂tφ1 + ∂τφ0)

− γ (sinφ0)φ1∂tφ0 + (cosφ0)φ2 = 0.

Simplifying using φ0 ≡ 0 we obtain

∂2
t φ2 + φ2 = −2∂t∂τφ1 − (1 + γ)∂tφ1

= −2 (−C ′ sin(t) +B′ cos(t))− (1 + γ) (−A sin(t) +B cos(t))

= [2C ′ + C(1 + γ)] sin(t)− [2D′ +D(1 + γ)] cos(t).

The secular terms are eliminated provided the coefficients of cos(t) and sin(t) vanish.
This yields two initial value problems{

2C ′ + C(1 + γ) = 0, C(0) = −α
2D′ +D(1 + γ) = 0, D(0) = 0

and the general solutions are D(τ) ≡ 0 and

C(τ) = −α exp

(
−
(

1 + γ

2

)
τ

)
.

Hence, a first-term approximation of the solution of the original problem (3.6.5) is

φ ∼ ε
(
α− αe−(1+γ)εt/2 cos(t)

)
∼ εα

(
1− e−(1+γ)εt/2 cos(t)

)
.

3. Consider the equation

ẍ+ ẋ = −ε(x2 − x), 0 < ε� 1. (3.6.10)
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Use the method of multiple scales to show that

x0(t, τ) = A(τ) +B(τ)e−t,

with τ = εt, and identify any resonant terms at O(ε). Show that the non-resonance
condition is ∂τA = A− A2 and describe the asymptotic behaviour of solutions.

Solution: With the slow scale τ = εt and assuming an asymptotic expansion of the
form

x(t, τ) ∼ x0(t, τ) + εx1(t, τ) + . . . ,

the differential equation (3.6.10) becomes[
∂2
t + 2ε∂t∂τ + ε2∂2

τ

](
x0 + εx1 + . . .

)
+
[
∂t + ε∂τ

](
x0 + εx1 + . . .

)
= −ε

[(
x0 + εx1 + . . .

)2

−
(
x0 + εx1 + . . .

)]
= −ε

[
x2

0 − x0

]
+O(ε2).

The O(1) equation is
∂2
t x0 + ∂tx0 = 0,

and its general solution is

x0(t, τ) = A(τ) +B(τ)e−t.

The O(ε) equation is

∂2
t x1 + ∂tx1 = −2∂t∂τx0 − ∂τx0 − (x2

0 − x0)

= −2
[
−Bτe

−t
]
−
[
Aτ +Bτe

−t
]
−
[
(A+Be−t)2 − (A+Be−t)

]
= −

[
A2 − A+ Aτ

]
− e−t

[
Bτ − 2Bτ + 2AB −B

]
−B2e−2t

= F (τ) +G(τ)e−t +H(τ)e−2t.

Since the first two terms belongs to the kernel of the homogeneous operator, the
corresponding particular solution has the form F (τ) and G(τ)te−t and only the first
one blows up as t −→∞, since

G(τ)te−t −→ 0 as t −→∞.

Hence, the non-resonance condition is F (τ) = 0, or

∂τA = A− A2. (3.6.11)

A phase-plane analysis shows that the system (3.6.11) has an unstable fixed point
at A = 0 and a stable fixed point at A = 1. Thus, we conclude that A(τ) −→ 1 as
τ −→∞, provided A(0) > 0.

4. Consider the differential equation

ẍ+ x = −εf(x, ẋ), with |ε| � 1.
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Let y = ẋ.

(a) Show that if E(t) = E(x(t), y(t)) = (x(t)2 + y(t)2)/2, then

Ė = −εf(x, y)y.

Hence, show that E(t) is approximately 2π-periodic with x = A0 cos(t) + O(ε)
provided ∫ 2π

0

f(A0 cos τ,−A0 sin τ) sin τ dτ = 0.

Solution: With y = ẋ, we have

ẏ = ẍ = −x− εf(x, ẋ) = −x− εf(x, y).

Therefore

Ė(x, y) = xẋ+ yẏ

= xy + y (−x− εf(x, y))

= −εf(x, y)y.

This means that to O(1), Ė = 0 which implies an unperturbed solution of the
form x0(t) = A0 cos(t+ θ0) = A0 cos(t). WLOG we may take θ0, as we can shift
time to eliminate any phase shift because we are dealing with an autonomous
system. Assume asymptotic expansions for both E(x, y) and x(t):

x ∼ x0 + εx1 + . . .

E ∼ E0 + εE1(t) + . . . .

From the expression of Ė(x, y), the O(ε) equation is

dE1

dt
= −f(x, y)y = −f(x0 + εx1 + . . . , ẋ0 + εẋ1 + . . . )

(
ẋ0 + εẋ1 + . . .

)
= −f(x0, ẋ0)ẋ0 +O(ε).

Therefore, to O(1),

E1(t) = E1(0)−
∫ t

0

f(x0(τ), ẋ0(τ))ẋ0(τ) dτ

= E1(0) + A0

∫ t

0

f(A0 cos(τ),−A0 sin(τ)) sin(τ) dτ.

If t is a multiple of 2π, say t = 2πn, then

E1(2πn) = E1(0) + nA0

∫ 2π

0

f(A0 cos(τ),−A0 sin(τ)) dτ
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and we deduce that E1 is approximately 2π-periodic if and only if∫ 2π

0

f(A0 cos(τ),−A0 sin(τ)) sin(τ) dτ = 0.

(b) Suppose that the periodicity condition on part (a) does not hold. Let En =
E(x(2πn), y(2πn)). Show that to lowest order En satisfies a difference equation
of the form

En+1 = En + εF (En),

with

F (En) =

∫ 2π

0

√
2Enf

(√
2En cos τ,−

√
2En sin τ

)
sin τ dτ.

Hint: Take x ∼ A cos t with A =
√

2E slowly varying over a single period of length
2π.

Solution: Since

E(t) ∼ E0 + εE1(t) ∼ A2
0

2
,

we have
A0(t) ≈

√
2E(t) +O(ε).

From part (a), we then have

E(t+ 2π) ∼ E0 + εE1(t+ 2π)

(c) Hence, deduce that a periodic orbit with approximate amplitude A∗ =
√

2E∗ exists
if F (E∗) = 0 and this orbit is stable if

ε
dF

dE
(E∗) < 0.

Hint: Spiralling orbits close to the periodic orbit x = A∗ cos(t) + O(ε) can be ap-
proximated by a solution of the form x = A cos(t) +O(ε).

Solution: From part (b), we have a one-dimensional map

(d) Using the above result, find the approximate amplitude of the periodic orbit of the
Van der Pol equation

ẍ+ x+ ε(x2 − 1)ẋ = 0

and verify that it is stable.

Solution: In this case we have f(x, y) = (x2 − 1)y and so

F (En) =

∫ 2π

0

√
2En

[
2En cos2(τ)− 1

][
−
√

2En sin(τ)
]

sin(τ) dτ

=

∫ 2π

0

[
1− 2En cos2(τ)

]
2En sin2(τ) dτ
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=

∫ 2π

0

2En sin2(τ)− 4E2
n sin2(τ) cos2(τ) dτ

=

∫ 2π

0

En

[
1− cos(2τ)

]
− E2

n sin2(2t) dτ

=

∫ 2π

0

En

[
1− cos(2τ)

]
− E2

n

2

[
1− cos(4τ)

]
dτ

= 2π
[
En −

E2
n

2

]
= πEn

[
2− En

]
.

Thus the zeros of F are E∗ = 0, 2 and the approximate amplitude of the periodic
orbit of the Van der Pol equation is A∗ =

√
2E∗ = 2. This orbit is stable since

F ′(En) = 2π(1− En) =⇒ F ′(2) = −2π < 0.

5. Consider the Van der Pol equation

ẍ+ x+ ε(x2 − 1)ẋ = Γ cos(ωt), 0 < ε� 1,

with Γ = O(1) and ω 6= 1/3, 1, 3. Use the method of multiple scales to show that the
solution is attracted to

x(t) =

(
Γ

1− ω2

)
cos(ωt) +O(ε)

when Γ2 ≥ 2(1− ω2)2 and

x(t) = 2

[
1− Γ2

2(1− ω2)2

]1/2

cos t+

(
Γ

1− ω2

)
cos(ωt) +O(ε)

when Γ2 < 2(1− ω2)2. Explain why this result breaks down when ω = 1/3, 1, 3.

Solution: Introducing the slow scale τ = εt and substituting the asymptotic expan-
sion

x ∼ x0(t, τ) + εx1(t, τ) + . . .

into the Van der Pol equation we obtain[
∂t+2ε∂t∂τ + ε2∂2

τ

](
x0 + εx1 + . . .

)
+
(
x0 + εx1 + . . .

)
+ ε
[(
x0 + εx1 + . . .

)2

− 1
][
∂t + ε∂τ

](
x0 + εx1 + . . .

)
= Γ cos(ωt).

The O(1) equation is (
∂2
t + 1

)
x0 = Γ cos(ωt)

and its complementary solution is

xc0(τ, t) = A(τ) cos(t+ θ(τ)) = A(τ) cos(Ω(t, τ)).
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Suppose ω 6= 1 so that we prevent secular terms of the O(1) equation. Assuming a
particular solution of the form

xp0(t, τ) = B(τ) cos(ωt).

Substituting this into the O(1) equation yields

−ω2B +B = Γ =⇒ B =
Γ

1− ω2
= δ.

Thus the general solution of the O(1) equation is

x0(t, τ) = xc0(t, τ) + xp0(t, τ) = A(τ) cos(Ω(t, τ)) + δ cos(ωt).

The O(ε) equation is(
∂2
t + 1

)
x1 = −2∂t∂τx0 − (x2

0 − 1)∂tx0

= 2
[
Aτ sin(Ω) + Cθτ cos(Ω)

]
− x2

0∂tx0 + ∂tx0

= 2
[
Aτ sin(Ω) + Cθτ cos(Ω)

]
−
[
A sin(Ω) + δω sin(ωt)

]
− x2

0∂tx0

= 2Aθτ cos(Ω) +
[
2Aτ − A

]
sin(Ω)− δω sin(ωt)− x2

0∂tx0.

We expand the term x2
0∂tx0 as follows:

−x2
0∂tx0 =

[
A2 cos2(Ω) + δ2 cos2(ωt) + 2Aδ cos(Ω) cos(ωt)

][
A sin(Ω) + δω sin(ωt)

]
=
A3

2
sin(2Ω) cos(Ω) + Aδ2 sin(Ω) cos2(ωt) + A2δ sin(2Ω) cos(ωt)

+ A2δω cos2(Ω sin(ωt) +
δ3ω

2
sin(2ωt) cos(ωt) + Aδ2ω cos(Ω) sin(2ωt).

We carefully apply double-angle formula and product-to-sum identity

2 cos2(X) = 1 + cos(2X)

2 sin(X) cos(Y ) = sin(X + Y ) + sin(X − Y )

onto each term of x2
0∂tx0:

A3

2
sin(2Ω) cos(Ω) =

A3

4

[
sin(3Ω) + sin(Ω)

]
Aδ2 sin(Ω) cos2(ωt) =

Aδ2

2
sin(Ω)

[
1 + cos(2ωt)

]
=
Aδ2

2

[
sin(Ω) + sin(Ω) cos(2ωt)

]
=
Aδ2

4

[
2 sin(Ω) + sin(Ω + 2ωt) + sin(Ω− 2ωt)

]
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A2δ sin(2Ω) cos(ωt) =
A2δ

2

[
sin(2Ω + ωt) + sin(2Ω− ωt)

]
A2δω cos2(Ω) sin(ωt) =

A2δω

2
sin(ωt)

[
1 + cos(2Ω)

]
=
A2δω

2

[
sin(ωt) + sin(ωt) cos(2Ω)

]
=
A2δω

4

[
2 sin(ωt) + sin(ωt+ 2Ω) + sin(ωt− 2Ω)

]
=
A2δω

4

[
2 sin(ωt) + sin(2Ω + ωt)− sin(2Ω− ωt)

]
δ3ω

w
sin(2ωt) cos(ωt) =

δ3ω

4

[
sin(3ωt) + sin(ωt)

]
Aδ2ω cos(Ω) sin(2ωt) =

Aδ2ω

2

[
sin(2ωt+ Ω) + sin(2ωt− Ω)

]
=
Aδ2ω

2

[
sin(Ω + 2ωt)− sin(Ω− 2ωt)

]
.

Combining everything, the O(ε) equation takes the form(
∂2
t + 1

)
x1 =

[
2Aθτ

]
cos(Ω) +

[
2Aτ − A+

A3

4
+
Aδ2

2

]
sin(Ω) +

[
A3

4

]
sin(3Ω)

+

[
−δω +

A2δω

2
+
δ3ω

4

]
sin(ωt) +

[
δ3ω

4

]
sin(3ωt)

+

[
Aδ2

4
+
Aδ2ω

2

]
sin(Ω + 2ωt) +

[
Aδ2

4
− Aδ2ω

2

]
sin(Ω− 2ωt)

+

[
A2δ

2
+
A2δω

4

]
sin(2Ω + ωt) +

[
A2δ

2
− A2δω

4

]
sin(2Ω− ωt).

Terms of the form sin(ωt) and sin(3ωt) will be resonant if ω = 1, 1/3. Terms of the
form sin(Ω± 2ωt) will be resonant if

t± 2ωt = (1± 2ω)t = ±t ⇐⇒ ω = 0, 1.

Terms of the form sin(2Ω± ωt) will be resonant if

2t± ωt = (2± ω)t = ±t ⇐⇒ ω = 1, 3.

Therefore, if we assume that ω 6= 1/3, 1, 3 then the only resonant terms on the right-
hand side of the O(ε) equation are those involving cos(Ω) and sin(Ω) and we require
their coefficients to vanish, i.e.

2Aθτ = 0 and 2Aτ = A− A3

4
− Aδ2

2

= A

(
1− A2

4
− δ2

2

)
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= −A
(
A2

4
− C(δ)

)
, where C(δ) = 1− δ2

2
.

We now perform a case analysis:

(a) When C(δ) < 0, that is, δ2 > 2, Aτ has only one fixed point at A = 0 and this
is asymptotically stable, i.e. A(τ) −→ 0 as τ −→ ∞ for any initial conditions
A(0). Therefore, the solution is attracted to

x(t) = δ cos(ωt) +O(ε) =

(
Γ

1− ω2

)
cos(ωt) +O(ε).

(b) When C(δ) > 0, that is, δ2 < 2, Aτ has three fixed points A0 = 0,±2
√
C(δ) and

a phase-plane analysis shows that the fixed point A0 = 0 becomes unstable and
the other two are stable. Therefore, as τ −→∞ we have

A(τ) −→

{
2
√
C(δ) if A(0) > 0,

−2
√
C(δ) if A(0) < 0.

In the case of positive A(0), the solution is then attracted to

x(t) = 2
√
C(δ) cos(t+ θ0) + δ cos(ωt) +O(ε)

= 2

[
1− Γ2

2(1− ω2)2

]1/2

+

(
Γ

1− ω2

)
cos(ωt) +O(ε).

6. Multiple scales with nonlinear wave equations. The Korteweg-de Vries (KdV)
equation is

ut + ux + αuux + βuxxxx = 0, x ∈ R, t > 0,

where α, β are positive real constants and u(x, 0) = εf(x) for 0 < ε� 1.

(a) Let θ = kx− ωt and seek traveling wave solutions using an expansion of the form

u(x, t) ∼ ε[u0(θ) + εu1(θ) + . . . ],

where ω = k − βk3 and k > 0 is a constant. Show that this can lead to secular
terms.

Solution:

(b) Use multiple scales (variables θ, εx, εt) to eliminate the secular terms in part (a) and
find a first-term expansion. In the process, show that f(x) must have the form

f(x) = A cos(kx+ φ)

for constants A,B, φ in order to generate a traveling wave? Hint: Use the fact that
f(x) is independent of ε.
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Solution:
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Chapter 4

The Wentzel-Kramers-Brillouin
(WKB) Method

The WKB method, named after Wentzel, Kramers and Brillouin, is a method for finding
approximate solutions to linear differential equations with spatially varying coefficients. The
origin of WKB theory dates back to 1920s where it was developed by Wentzel, Kramers and
Brillouin to study time-independent Schrodinger equation. This often arises from the following
problem:

d2y

dx2
− q(εx)y = 0,

with the slowly varying potential energy. To handle such problem, the WKB method introduces
an ansatz of the expansion term as a product of slowly varying and exponenetially rapidly
varying terms.

4.1 Introductory Example

Consider the differential equation

ε2y′′ − q(x)y = 0 on x ∈ [0, 1], (4.1.1)

where q is a smooth function. For constant q, the general solution of (4.1.1) is

y(x) = a0e
−x√q/ε + b0e

x
√
q/ε

and the solution either blows up (q > 0) or oscillates (q < 0) rapidly on a scale of O(ε). The
hypothesis of the WKB method is that this exponential solution can be generalised to obtain
an approximate solution of the full problem (4.1.1).

We start with the following general WKB ansatz:

y(x) ∼ eθ(x)/εα [y0(x) + εαy1(x) + . . . ] as ε −→ 0 (4.1.2)

for some α > 0. Here, we assume that the solution varies exponentially with respect to the
fast variation. From (4.1.2) we obtain:

y′ ∼
{
ε−αθxy0 + y′0 + θxy1 + . . .

}
eθ/ε

α

(4.1.3a)

y′′ ∼
{
ε−2αθ2

xy0 + ε−α
(
θxxy0 + 2θxy

′
0 + θ2

xy1

)
+ . . .

}
eθ/ε

α

(4.1.3b)

93
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Figure 4.1: An example of turning points: quantum tunneling. Depending on effective potential
energy, the solutions have different behavior and need to be matched (Taken from Wikipedia
Commons).

y′′′ ∼
{
ε−3αθ3

xy0 + ε−2αθx
(
3θxy

′
0 + 3θxxy0 + θ2

xy1

)
+ . . .

}
eθ/ε

α

(4.1.3c)

y′′′′ ∼
{
ε−4αθ4

xy0 + ε−3αθ2
x

(
6θxxy0 + 4θxy

′
0 + θ2

xy1

)
+ . . .

}
eθ/ε

α

(4.1.3d)

Substituting both (4.1.2) and (4.1.3) into (4.1.1) and cancelling the exponential term yield

ε2

[
θ2
xy0

ε2α
+

1

εα
(
θxxy0 + 2θxy

′
0 + θ2

xy1

)
+ . . .

]
− q(x) [y0 + εαy1 + . . . ] = 0. (4.1.4)

Such cancellation is possible due to the linearity of the equation!
Balancing leading-order terms in (4.1.4) we see that α = 1. The O(1) equation is the

well-known eikonal equation:
θ2
x = q(x), (4.1.5)

and its solutions (in one-dimensional) are

θ(x) = ±
∫ x√

q(s) ds. (4.1.6)

To determine y0(x), we need to solve the O(ε) equation which is the transport equation:

θxxy0 + 2θxy
′
0 + θ2

xy1 = q(x)y1. (4.1.7)

The y1 terms cancel out due to the eikonal equation (4.1.5) and (4.1.7) reduces to

θxxy0 + 2θxy
′
0 = 0. (4.1.8)

This can be easily solved since it is separable:

y′0
y0

= − θxx
2θx

ln |y0| = −
1

2
ln |θx|+ C

ln |y0| = − ln
√
|θx|+ C
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y0(x) =
C√
θx

= Cq(x)−1/4,

where C is an arbitrary nonzero constant and the last line follows from (4.1.6). Hence, a
first-term asymptotic approximation of the general solution of (4.1.1) is

y(x) ∼ q(x)−1/4

[
a0 exp

(
−1

ε

∫ x√
q(s) ds

)
+ b0 exp

(
1

ε

∫ x√
q(s) ds

)]
, (4.1.9)

where a0, b0 are arbitrary constants, possibly complex. It is evident that (4.1.9) is valid if
q(x) 6= 0 on [0, 1]. The x-values where q(x) = 0 are called turning points and this nontrivial
issue will be addressed in Section 4.2.

Example 4.1.1. Choose q(x) = −e2x. Then the WKB approximation (4.1.9) is

y(x) ∼ e−x/2
[
a0e
−iex/ε + b0e

iex/ε
]

= e−x/2 [α0 cos(λex) + β0 sin(λex)] ,

where λ = 1/ε. With boundary conditions y(0) = a, y(1) = b, we obtain

y(x) ∼ e−x/2
(
b
√
e sin (λ(ex − 1))− a sin (λ(ex − e))

sin (λ(e− 1))

)
.

The exact solution of (4.1.1) with q(x) = −e2x can be solved as follows. Performing a change
of variable x̃ = ex/ε = λex, we obtain

x = ln(ε) + ln(x̃) =⇒ dx

dx̃
=

1

x̃
.

Setting Y (x̃) = y(x), it follows from the chain rule that

dY

dx̃
=
dy

dx

dx

dx̃
=
y′

x̃
d2Y

dx̃2
= − y

′

x̃2
+
y′′

x̃2
= −1

x̃

dY

dx̃
+
y′′

x̃2
.

Consequently, the equation of Y (x̃) is the zeroth-order Bessel’s differential equation

x̃2d
2Y

dx̃2
+ x̃

dY

dx̃
+ x̃2Y = 0,

and the solution of this is

Y (x̃) = c0J0(x̃) + d0Y0(x̃) = c0J0(λex) + d0Y0(λex) = y(x),

where J0(·) and Y0(·) are the zeroth-order Bessel functions of the first and second kinds respec-
tively. Finally, solving for c0 and d0 using the boundary conditions yields

c0 =
1

D
[bY0(λ)− aY0(λe)]

d0 =
1

D
[aJ0(λe)− bJ0(λ)]

D = J0(λe)Y0(λ)− Y0(λe)J0(λ).

One can plot the exact solution and the WKB approximation and see that their difference is
almost zero!
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To measure the error of the WKB approximation (4.1.9), we look at the O(ε2) equation
which has the form

θxxy1 + 2θxy
′
1 + θ2

xy2 + y′′0 = q(x)y2. (4.1.10)

The y2 terms vanish due to the eikonal equation (4.1.5) and so (4.1.10) reduces to

θxxy1 + 2θxy
′
1 + y′′0 = 0. (4.1.11)

Because the first two terms of (4.1.11) are similar to the transport equation (4.1.8), we make
an ansatz y1(x) = y0(x)w(x). (4.1.11) reduces to

2θxy0w
′ + y′′0 = 0. (4.1.12)

Suppose q(x) > 0 so that θx is a real-valued function. Rearranging (4.1.12) in terms of w′ and
integrating by parts with respect to x we obtain

2θxy0w
′ = −y′′0

2Cθxw
′

√
θx

= − d2

dx2

(
C√
θx

)
=

d

dx

(
Cθxx

2θ
3/2
x

)
w′ =

1

4

d

dx

(
θxx

θ
3/2
x

)(
1√
θx

)
w(x) =

1

4

∫ x [ d
dx

(
θxx

θ
3/2
x

)](
1√
θx

)
ds

= d+
1

4

(
θxx
θ2
x

)
− 1

4

∫ x( θxx
θ

3/2
x

)
d

dx

(
1√
θx

)
ds

= d+
1

4

(
θxx
θ2
x

)
+

1

8

∫ x(θ2
xx

θ3
x

)
ds,

where d is an arbitrary constant. On the other hand, θx is a complex-valued function if q(x) < 0,
i.e. θx = ±i

√
−q. We then have

θxx = ± i
2

(
−qx√
−q

)
= ∓ iqx

2
√
−q

θxx
θ2
x

= ∓ iqx
2q
√
−q

= ± iqx
2(−q)3/2

θ2
xx =

−q2
x

4(−q)
=
q2
x

4q

θ3
x = (±i)3 (√−q)3

= ∓i (−q)3/2

θ2
xx

θ3
x

=
q2
x

∓4iq(−q)3/2
= ∓ iq2

x

4(−q)5/2
.
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Consequently,

w(x) =



d+
1

8

qx
q3/2

+
1

32

∫ x( q2
x

q5/2

)
ds if θx(x) =

√
q(x),

d− 1

8

qx
q3/2
− 1

32

∫ x( q2
x

q5/2

)
ds if θx(x) = −

√
q(x),

d+
1

8

iqx
(−q)3/2

− 1

32

∫ x( iq2
x

(−q)5/2

)
ds if θx(x) = i

√
−q(x),

d− 1

8

iqx
(−q)3/2

+
1

32

∫ x( iq2
x

(−q)5/2

)
ds if θx(x) = −i

√
−q(x).

Finally, for small ε the WKB ansatz (4.1.2) is well-ordered provided

|εy1(x)| � |y0(x)|, or |εw(x)| � 1.

In terms of the function q(x) and its first derivatives, for x ∈ [x0, x1] we will have an accurate
approximation if

ε

[
|d|+ 1

32

∣∣∣∣ qxq3/2

∣∣∣∣ (4 +

∫ x1

x0

∣∣∣∣qxq
∣∣∣∣ dx)]� 1,

where | · | := ‖ · ‖∞ over the interval [x0, x1]. We stress that this condition holds if the interval
[x0, x1] does not contain a turning point.

Remark 4.1.2. The constants a0, b0 in (4.1.9) and d in w(x) are determined from boundary
conditions. However, it is very possible that these constants depend on ε. It is therefore
necessary to make sure this dependence does not interfere with the ordering assumed in the
WKB ansatz (4.1.2).

4.2 Turning Points

This section is devoted to the analysis of turning points of q(x). Assume q(x) is smooth and has
a simple zero at xt ∈ [0, 1], i.e. q(xt) = 0 and q′(xt) 6= 0. For concreteness, we take q′(xt) > 0
and so we expect solutions of (4.1.1) to be oscillatory for x < xt and exponential for x > xt.
We can apply the WKB method on the regions {x < xt} and {x > xt}. More precisely, from
(4.1.9) we have

y ∼

{
yL(x, xt) if x < xt,

yR(x, xt) if x > xt,
(4.2.1)

where

yL(x, xt) =
1

q(x)1/4

[
aL exp

(
−1

ε

∫ xt

x

√
q(s) ds

)
+ bL exp

(
1

ε

∫ xt

x

√
q(s) ds

)]
(4.2.2a)

yR(x, xt) =
1

q(x)1/4

[
aR exp

(
−1

ε

∫ x

xt

√
q(s) ds

)
+ bR exp

(
1

ε

∫ x

xt

√
q(s) ds

)]
. (4.2.2b)

An important realization is that these coefficients aL, bL, aR, bR are not all independent. In
addition to the two boundary conditions at x = 0 and x = 1, we also have matching conditions
in a transition layer centered at x = xt.
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4.2.1 Transition layer

Following the boundary layer analysis, we introduce the boundary layer coordinate

x̃ =
x− xt
εβ

or x = xt + εβx̃.

We can reduce (4.1.1) by expanding the function q(x) around the turning point xt

q(x) = q(xt + εβx̃) = q(xt) + q′(xt)ε
βx̃+ . . .

≈ εβx̃q′(xt).

Denote the inner solution by Y (x̃). Transforming (4.1.1) using

d

dx
=

1

εβ
d

dx̃

gives the inner equation
ε2−2βY ′′ −

(
εβx̃q′t + . . .

)
Y = 0, (4.2.3)

where q′t := q′(xt). Balancing leading-order terms in (4.2.3) means we require

2− 2β = β =⇒ β =
2

3
.

Since it is not clear what the asymptotic sequence should be, we take the asymptotic
expansion to be

Y ∼ εγY0(x̃) + . . . . (4.2.4)

The O(ε2/3) equation is
Y ′′0 − x̃q′tY0 = 0, −∞ < x̃ <∞. (4.2.5)

Performing a coordinate transformation s = (q′t)
1/3 x̃, (4.2.5) becomes the Airy’s equation:

d2Y0

ds2
− sY0 = 0, −∞ < s <∞, (4.2.6)

and this can be solved either using power series expansion or Laplace transform. The general
solution of (4.2.6) is

Y0(s) = aAi(s) + bBi(s), (4.2.7)

where Ai(·) and Bi(·) are Airy functions of the first and the second kinds respectively. It is
well-known that

Ai(x) =
1

32/3π

∞∑
k=0

1

k!
Γ

(
k + 1

3

)
sin

(
2π

3
(k + 1)

)(
31/3x

)k
= Ai(0)

(
1 +

1

6
x3 + . . .

)
+ Ai′(0)

(
x+

1

12
x4 + . . .

)
Bi(x) = eiπ/6Ai

(
xe2πi/3

)
+ e−iπ/6Ai

(
xe−2πi/3

)
= Bi(0)

(
1 +

1

6
x3 + . . .

)
+ Bi′(0)

(
x+

1

12
x4 + . . .

)
,
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Figure 4.2: Plot of the two Airy functions (Taken from Wikipedia Commons).

where Γ(·) is the gamma function. Setting ξ =
2

3
|x|3/2, we also have that

Ai(x) ∼


1√

π|x|1/4

[
cos
(
ξ − π

4

)
+

5

72ξ
sin
(
ξ − π

4

)]
if x −→ −∞,

1

2
√
π|x|1/4

e−ξ
[
1− 5

72
ξ

]
if x −→ +∞,

(4.2.8a)

Bi(x) ∼


1√

π|x|1/4

[
cos
(
ξ +

π

4

)
+

5

72ξ
sin
(
ξ +

π

4

)]
if x −→ −∞,

1√
π|x|1/4

eξ
[
1 +

5

72
ξ

]
if x −→ +∞.

(4.2.8b)

4.2.2 Matching

From (4.2.7), the general solution of (4.1.1) in the transition layer is

Y0(x̃) = aAi
[
(q′t)

1/3
x̃
]

+ bBi
[
(q′t)

1/3
x̃
]
. (4.2.9)

We now have 6 undetermined constants from (4.2.2) and (4.2.9), but these are all connected
since the inner solution (4.2.9) must match the outer solutions (4.2.2). These will results in
two arbitrary constants in the general solution (4.2.1). Since the inner solution is unbounded,
we introduce an intermediate variable

xη =
x− xt
εη

, 0 < η <
2

3
,

where the interval for η comes from the requirement that the scaling for the intermediate vari-
able must lie between the outer scale, O(1) and the inner scale, O(ε2/3).
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4.2.3 Matching for x > xt

We first change the stretched variable x̃ to the intermediate variable xη:

x̃ =
x− xt
εβ

=
x− xt
εηεβ−η

= εη−βxη = εη−2/3xη.

Note that xη > 0 since x > xt. From (4.2.4) and (4.2.9), the inner solution Y (x̃) now becomes

Y ∼ εγY0

(
εη−2/3xη

)
+ . . .

∼ εγ
[
aAi

(
(q′t)

1/3
εη−2/3xη

)
+ bBi

(
(q′t)

1/3
εη−2/3xη

)]
+ . . .

∼ εγ [aAi(r) + bBi(r)] + . . .

∼ εγ
[

a

2
√
πr1/4

exp

(
−2

3
r3/2

)
+

b√
πr1/4

exp

(
2

3
r3/2

)]
, (4.2.10)

where r = q′(xt)
1/3εη−2/3xη > 0 and the last line follows from (4.2.8). On the other hand, since∫ x

xt

√
q(s) ds ∼

∫ xt+εηxη

xt

√
(s− xt)q′t ds

=
√
q′t

[
2

3
(s− xt)3/2

] ∣∣∣∣xt+εηxη
xt

=
2

3

√
q′t (εηxη)

3/2

=
2

3
εr3/2

and

q(x)−1/4 ∼ [q(xt) + (x− xt)q′t]
−1/4

= [εηxηq
′
t]
−1/4

= ε−1/6 (q′t)
−1/6

r−1/4,

the right outer solution yR becomes

yR ∼
ε−1/6

(q′t)
1/6 r1/4

[
aR exp

(
−2

3
r3/2

)
+ bR exp

(
2

3
r3/2

)]
. (4.2.11)

Consequently, matching (4.2.10) the right outer solution yR with (4.2.11) the inner solution Y
yields the following:

γ = −1

6
, aR =

a

2
√
π

(q′t)
1/6
, bR =

b√
π

(q′t)
1/6
. (4.2.12)

4.2.4 Matching for x < xt

Because x < xt, we have xη < 0 which introduces complex numbers into the outer solution
yL. Using the asymptotic properties of Airy functions as r −→ −∞ (see (4.2.8)), the inner
solution becomes

Y ∼ εγ [aAi(r) + bBi(r)] + . . .
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∼ εγ
[

a√
π|r|1/4

cos

(
2

3
|r|3/2 − π

4

)
+

b√
π|r|1/4

cos

(
2

3
|r|3/2 +

π

4

)]
.

Using the identity cos θ = (eiθ + e−iθ)/2, a more useful form of the inner expansion Y as
r −→ −∞ is

Y ∼ εγ

2
√
π|r|1/4

[ (
ae−iπ/4 + beiπ/4

)
eiζ +

(
aeiπ/4 + be−iπ/4

)
e−iζ

]
, (4.2.13)

where ζ =
2

3
|r|3/2. On the other hand, since

∫ xt

x

√
q(s) ds ∼

∫ xt

xt+εηxη

√
(s− xt)q′t ds

=
√
q′t

[
2

3
(s− xt)3/2

] ∣∣∣∣xt
xt+εηxη

= −2

3

√
q′t (εηxη)

3/2

= −2

3
ε|r|3/2 (−1)3/2

=
2

3
iε|r|3/2,

and

q(x)−1/4 ∼ [εηxηq
′
t]
−1/4

= ε−1/6 (q′t)
−1/6 |r|−1/4 (−1)−1/4

= ε−1/6 (q′t)
−1/6 |r|−1/4e−iπ/4,

the left outer solution yL becomes

yL ∼
ε−1/6e−iπ/4

(q′t)
1/6 |r|1/4

[
aLe

−iζ + bLe
iζ
]
. (4.2.14)

Consequently, matching (4.2.14) the left outer solution yL with (4.2.13) the inner solution Y
yields the following:

aL =
(q′t)

1/6

2
√
π

(ia+ b) , bL =
(q′t)

1/6

2
√
π

(a+ ib) = iāL. (4.2.15)

From (4.2.12), it follows that

aL = iaR +
bR
2
, bL = aR +

i

2
bR (4.2.16)

or in matrix form [
aL
bL

]
=

[
i 1/2
1 i/2

] [
aR
bR

]
. (4.2.17)
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4.2.5 Conclusion

Because we assume q(t) < 0 for x < xt, this introduces complex numbers on yL:

q(x)−1/4 = e−iπ/4|q(x)|−1/4∫ xt

x

√
q(s) ds = i

∫ xt

x

√
|q(s)| ds

In conclusion, we have

y(x) =

{
yL(x, xt) if x < xt,

yR(x, xt) if x > xt,

where

yL(x, xt) =
1

|q(x)|1/4

[(
iaR +

bR
2

)
e−iθ(x)/εe−iπ/4 +

(
aR +

ibR
2

)
eiθ(x)/εe−iπ/4

]
=

1

|q(x)|1/4

[
aR
(
e−iθ(x)/εeiπ/4 + eiθ(x)/εe−iπ/4

)
+
bR
2

(
e−iθ(x)/εe−iπ/4 + eiθ(x)/εeiπ/4

)]
=

1

|q(x)|1/4

[
2aR cos

(
1

ε
θ(x)− π

4

)
+ bR cos

(
1

ε
θ(x) +

π

4

)]
yR(x, xt) =

1

q(x)1/4

[
aRe

−κ(x)/ε + bRe
κ(x)/ε

]
θ(x) =

∫ xt

x

√
|q(s)| ds

κ(x) =

∫ x

xt

√
|q(s)| ds.

Example 4.2.1. Consider q(x) = x(2− x), where −1 < x < 1. The simple turning point is at
xt = 0, with q′(0) = 2 > 0. One can compute and show that

θ(x) =
1

2
(1− x)

√
x(x− 2)− 1

2
ln
[
1− x+

√
x(x− 2)

]
, x < 0

κ(x) =
1

2
(x− 1)

√
x(2− x)− 1

2
arcsin(x− 1) +

π

4
, x > 0.

4.2.6 The opposite case: q′t < 0

The approximation derived for q′(xt) > 0 can be used when q′(xt) < 0 by simply making the
change of variables z = xt − x. This results in[

aL
bL

]
=

[
i/2 1
1/2 i

] [
aR
bR

]
.

Consequently,

yL(x) =
1

q(x)1/4

[
aLe

θ(x)/ε + bLe
−θ(x)/ε

]
yR(x) =

1

|q(x)|1/4

[
2bL cos

(
1

ε
κ(x)− π

4

)
+ aL cos

(
1

ε
κ(x) +

π

4

)]
.
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4.3 Wave Propagation and Energy Methods

In this section, we study how to obtain an asymptotic approximation of a travelling-wave
solution of the following PDE which models the string displacement

uxx = µ2(x)utt + α(x)ut + β(x)u, 0 < x <∞, t > 0 (4.3.1a)

u(0, t) = cos(ωt) (4.3.1b)

The terms α(x)ut and βu correspond to damping and elastic support respectively. From the
initial condition, we see that the string is periodically forced at the left end and so the solution
will develop into a wave that propagates to the right.

Observe that there is no obvious small parameter ε, but we will extract one from the
following observation. In the special case where α = β = 0 and µ equals some constant, (4.3.1)
reduces to the classical wave equation and we obtain the right-moving plane waves

u(x, t) = ei(wt−kx), where the wavenumber k satisfies k = ±ωµ.

For higher temporal frequencies ω � 1, these waves have short wavelength, i.e. λ =

∣∣∣∣2πk
∣∣∣∣� 1.

Motivated by this, we choose ε = 1/ω and construct an asymptotic approximation of the
travelling-wave solution of (4.3.1) in the case of a high frequency. The WKB ansatz is assumed
to be

u(x, t) ∼ exp

i
wt− wγθ(x)︸ ︷︷ ︸

fast oscillation


u0(x) +

1

wγ
u1(x)︸ ︷︷ ︸

slowly-varying

+ . . .

 . (4.3.2)

Substituting (4.3.2) into (4.3.1) we obtain

−ω2γθ2
x

(
u0 + w−γu1 + . . .

)
+ iwγθx (∂xu0 + . . . ) +

d

dx
(iωγθxu0 + . . . )

= −µ2ω2
(
u0 + ω−γu1 + . . .

)
− iωα (u0 + . . . ) + β (u0 + . . . ) .

Balancing the first terms on each side of this equation gives γ = 1. The O(ω2) = O(1/ε2)
equation is the eikonal equation:

θ2
x = µ2(x), (4.3.3)

and its solutions are

θ(x) = ±
∫ x

0

µ(s) ds. (4.3.4)

We choose the positive solution as we are considering the right-moving waves. The O(ω) =
O(1/ε) equation is the transport equation:

− θ2
xu1 + iθx∂xu0 + i (θx∂xu0 + θxxu0) = −µ2u1 − iαu0. (4.3.5)

The u1 terms cancel out due to the eikonal equation (4.3.3), so (4.3.5) reduces to

θxxu0 + 2θx∂xu0 = −αu0, . (4.3.6)

With θx = µ(x), we can rearrange (4.3.6) and obtain a first order ODE in u0:

∂xu0 +

(
µx + α

2µ

)
u0 = 0, (4.3.7)
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which can be solved using the method of integrating factor. The integrating factor is given by

I(x) = exp

(∫ x

0

(
µs(s) + α(s)

2µ(s)

)
ds

)
=
√
µ(x) exp

(
1

2

∫ x

0

α(s)

µ(s)
ds

)
,

and so (4.3.7) can be written as

d

dx
(I(x)u0) = 0, u0 =

a0

I(x)
=

a0√
µ(x)

exp

(
−1

2

∫ x

0

α(s)

µ(s)
ds

)
. (4.3.8)

Finally, imposing the boundary condition at x = 0 we obtain a first-term asymptotic expansion
of the travelling-wave solution of (4.3.1)

u(x, t) ∼

√
µ(0)

µ(x)
exp

[
−1

2

∫ x

0

α(s)

µ(s)
ds

]
cos

(
ωt− ω

∫ x

0

µ(s) ds

)
. (4.3.9)

Observe that in (4.3.9) the amplitude and phase of the travelling wave depend on the spatial
position x. Interestingly, (4.3.9) is independent of β(x).

4.3.1 Connection to energy methods

Energy methods are extremely powerful in the study of wave-related problems. To determine
the energy equation in this case, we multiply (4.3.1) by ut:

utuxx = µ2(x)ututt + α(x)u2
t + β(x)uut

∂x(utux)−
1

2
∂t
(
u2
x

)
=

1

2
µ2(x)∂t

(
u2
t

)
+ α(x)u2

t + β(x)∂t
(
u2
)

∂t

[
1

2
µ2(x)

(
u2
t

)
+

1

2
β(x)u2 +

1

2

(
u2
x

)]
− ∂x (utux) = −α(x)u2

t

∂tE(x, t) + ∂xS(x, t) = −Φ(x, t),

where

E(x, t) = energy density :=
1

2
µ2(x) (∂tu)2 +

1

2
(∂xu)2 +

1

2
β(x)u2

S(x, t) = energy flux := −∂tu∂xu
Φ(x, t) = dissipation function := α(x) (∂tu)2 .

We are interested in the energy over some spatial interval of the form [x1(t), x2(t)]. It
follows from Leibniz’s rule,

d

dt

∫ x2(t)

x1(t)

E(x, t) dx = E(x2(t), t)ẋ2 − E(x1(t), t)ẋ1 +

∫ x2(t)

x1(t)

∂tE(x, t) dx (4.3.10a)

= E(x2(t), t)ẋ2 − E(x1(t), t)ẋ1 − S(x2(t), t) + S(x1(t), t)−
∫ x2(t)

x1(t)

Φ(x, t) dx.

(4.3.10b)

The term E(xj(t), t)ẋj is the change of energy due to the motion of the endpoint, S(xj(t), t)
is the flux of energy across the endpoint due to wave motion and −

∫
[x1(t),x2(t)]

Φ(x, t) dx is the

energy loss over the interval due to dissipation.
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The WKB solution can be written in the more general form:

u(x, t) ∼ A(x)︸︷︷︸
slowly changing amplitude

cos

wt− ϕ(x)︸︷︷︸
rapidly changing phase

 , ϕ(x) = ωθ(x). (4.3.11)

It follows that

E(x, t) ∼ 1

2
A2
(
µ2ω2 + ϕ2

x

)
sin2 [ωt− ϕ(x)] (4.3.12a)

S(x, t) ∼ ωϕxA
2 sin2 [ωt− ϕ(x)] (4.3.12b)

Φ(x, t) ∼ αω2A2 sin2 [ωt− ϕ(x)] . (4.3.12c)

Note that we neglect A′ since A is slowly changing. Suppose we choose xi(t) satisfying

ẋi =
ω

ϕx(xi)
= phase velocity.

Such curves in the x− t plane are called phase lines. Then

Eẋ− S ∼ 1

2

ωA2

ϕx

[
µ2ω2 + ϕ2

x

]
sin2 [ωt− ϕ(x)]− ωϕxA2 sin2 [ωt− ϕ(x)]

=
1

2

ωA2

ϕx

[
µ2ω2 − ϕ2

x

]
sin2 [ωt− ϕ(x)] = 0,

since θ(x) = ϕ(x)/ω satisfies the eikonal equation (4.3.3). Hence, if x2 − x1 = O(1/ω) then it

follows from (4.3.10) that
dE

dt
≈ 0, i.e. the total energy remains constant (to the first term)

between any two phase lines x1(t), x2(t) that are O(1/ω) apart.
Recall the energy equation that

∂tE + ∂xS = −Φ.

Averaging the energy equation over one period in time results in

∂x

(∫ 2π/ω

0

S(x, t) dt

)
= −

∫ 2π/ω

0

Φ(x, t) dt,

where the average of ∂tE over one period vanishes using (4.3.12) for E. Substituting (4.3.12)
for S and Φ, we obtain

∂x
(
ϕxA

2
)

= −αωA2

∂x
(
θxA

2
)

= −αA2

θxxA
2 + 2θxAAx = −αA2

θxxA+ 2θxAx = −αA,

which implies that A = u0 since the last equation is precisely the transport equation (4.3.6).
Physically, this means that the transport equation corresponds to the balance of energy over
one period in time.
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Figure 4.3: Instructive case of the multi-dimensional wave equation. In R2, the wave propagates
from the circle with radius a.

4.4 Higher-Dimensional Waves - Ray Methods

The extension of the WKB method to higher dimensions is relatively straightforward, but the
equations could be difficult to solve explicitly. Consider the n-dimensional wave equation

∇2u = µ2(x)∂2
t u, x ∈ Rn, n = 2, 3. (4.4.1)

We look for time-harmonic solutions u(x, t) = e−iωtV (x) and (4.4.1) reduces to the Helmholtz
equation

∇2V + ω2µ2(x)V = 0. (4.4.2)

It is more instructive to have some understanding of what properties the solution has and
how the WKB approximation takes advantage of them. Suppose µ is constant and we want to
solve (4.4.2) in the region exterior to the circle ‖x‖ = a in R2. Exploiting the geometry leads
to the choice of polar coordinates

x = ρ cos(ϕ), y = ρ sin(ϕ).

We impose the Dirichlet boundary condition V = f(ϕ) at ρ = a and the Sommerfeld radia-
tion condition which ensures that waves only propagate outward from the circle:

√
ρ [∂ρV − iωµV ] = 0 for ρ −→∞.

Using separation of variables, the general solution of (4.4.2) is given by

V (ρ, ϕ) =
∞∑

n=−∞

αn

(
H

(1)
n (ωµρ)

H
(1)
n (ωµa)

)
e−inϕ, (4.4.3)

where H
(1)
n is the Hankel function of first kind and the αn are determined from the boundary

condition at ρ = a. It is known that for large values of z

H(1)
n (z) ∼

√
2

πz
exp

(
i
(
z − nπ

2
− π

4

))
.
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Consequently, in the regime of higher frequency ω � 1 (4.4.3) reduces to

V (ρ, ϕ) ∼ f(ϕ)

√
a

ρ
eiωµ(ρ−a). (4.4.4)

Thus we have a WKB-like solution for constant µ. Radial lines in this example correspond
to rays and from (4.4.4) we see that along a ray (i.e. ϕ is fixed), the solution has a highly
oscillatory component that is multiplied by a slowly varying amplitude V0 = f(ϕ)

√
a/ρ that

decays as ρ increases.

4.4.1 WKB expansion

We first specify the domain and boundary conditions. The Helmholtz equation (4.4.2) is to be
solved in a region exterior to a smooth surface S, where S encloses a bounded convex domain.
This means that there is a well-defined unit outward normal at every point on the surface. We
impose the Dirichlet boundary condition

V (x0) = f(x0) for x0 ∈ S

and focus only on outward propagating waves.

For higher frequency waves, we take a WKB ansatz of the form

V (x) ∼ eiωθ(x)

[
V0(x) +

1

ω
V1(x) + . . .

]
. (4.4.5)

Then

∇V ∼ {iω∇θV0 + i∇θV1 +∇V1 + . . . } eiωθ (4.4.6a)

∇2V ∼
{
−ω2∇θ · ∇θV0 + ω

(
−∇θ · ∇θV1 + 2i∇θ · ∇V0 +∇2θV0

)
+ . . .

}
eiωθ. (4.4.6b)

Substituting (4.4.6) into (4.4.2) and rearranging we find that

ω2
(
−∇θ · ∇θV0 + µ2V0

)
+ ω

[
−∇θ · ∇θV1 + 2i∇θ · ∇V0 + i∇2θV0 + µ2V1

]
+O(1) = 0(

∇θ · ∇θ − µ2
)
V0 +

1

ω

[(
∇θ · ∇θ − µ2

)
V1 − i∇2θV0 − 2i∇θ · ∇V0

]
+O

(
1

ω2

)
= 0.

The O(1) equation is the eikonal equation which is now nontrivial to solve:

∇θ · ∇θ = µ2. (4.4.7)

After cancelling the V1 term using the eikonal equation (4.4.7), the O(1/ω) equation is the
transport equation

2∇θ · ∇V0 +
(
∇2θ

)
V0 = 0. (4.4.8)

Both ±θ are solutions to the eikonal equation and we choose the positive solution +θ since
this corresponds to the outward propagating waves.
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Figure 4.4: Schematic figure of wave fronts in R3 and the path followed by one of the points
in the wave front (Taken from [Hol12, page 267]).

4.4.2 Surfaces and wave fronts

The usual method method for solving the nonlinear eikonal equation (4.4.7) is to introduce
characteristic coordinates. More precisely, we use curves that are orthogonal to the level
surfaces of θ(x) which are also known as wave fronts or phase fronts.

First, note that the WKB approximation of (4.4.1) has the form

u(x, t) ∼ ei(ωθ(x)−ωt)V0(x).

We introduce the phase function

Θ(x, t) = ωθ(x)− ωt.

Suppose we start at t = 0 with the surface Sc = {θ(x) = c}, so that

Θ(x, 0) = ωc.

As t increases, the points where Θ = ωc change, and therefore points forming Sc move and
form a new surface Sc+t = {θ(x) = c+ t}. We still have

Θ(x, t) = ωc.

The path each point takes to get from Scto Sc+t is obtained from the solution of the eikonal
equation and in the WKB method these paths are called rays.

The evolution of the wave front generates a natural coordinate system (s, α, β) where α, β
comes from parameterising the wave front and s from parameterising the rays. Note that
these coordinates are not unique as there are no unique parameterisation for the surfaces and
rays. It turns out that determining these coordinates is crucial in the derivation of the WKB
approximation.
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Example 4.4.1. Suppose we know a-priori that θ(x) = x · x. In this case, the surface Sc+t is
described by the equation |x|2 = c+ t, which is just the sphere with radius c+ t. The rays are
now radial lines and so the points forming Sc move along radial lines to form the surface Sc+t.
To this end, we use a modified version of spherical coordinates:

(x, y, z) = ρ(s) (sinα cos β, sinα sin β, cosα) ,

with

0 ≤ α < π, 0 ≤ β ≤ 2π, 0 ≤ s.

The function ρ(s) is required to be smooth and strictly increasing. Examples are ρ = s,
ρ = es − 1 or ρ = ln(1 + s).

An important property of the preceeding modified spherical coordinates is that (s, α, β)
forms an orthogonal coordinate system. That is, under the change of variables x = X(s, α, β),
the vector ∂sX tangent to the ray is orthogonal to the wave front Sc+t. We now in the
opposite case: we need to find θ(x) given conditions on the map X(s, α, β). Observe the
degree of freedom on specifiy X.

4.4.3 Solution of the eikonal equation

In what follows, we will assume that (s, α, β) forms an orthogonal coordinate system. This
means that a ray’s tangent vector ∂sX points in the same direction as∇θ when x = X(s, α, β),
or equivalently

∂X

∂s
= λ∇θ, (4.4.9)

where λ is a smooth positive function, to be specified later. WLOG, we assume that the rays
are parameterised so that s ≥ 0. One should not confuse s with the arclength parameterisation.

Along a ray,

∂sθ(X) = ∇θ · ∂sX = λ∇θ · ∇θ.

Therefore we can rewrite the eikonal equation as

∂sθ = λµ2 (4.4.10)

which can be integrated directly to yield

θ(s, α, β) = θ(0, α, β) +

∫ s

0

λµ2 dσ, (4.4.11)

assuming we can find such a coordinate system (s, α, β). This amounts to solving (4.4.9) which
is generally nonlinear and requires the assistance of numerical method. Nonetheless, we still
have the freedom of choosing the function λ.

4.4.4 Solution of the transport equation

It remains to find the first term V0 of the WKB approximation (4.4.5). Using (4.4.9) we have

∂sV0 = ∇V0 · ∂sX = λ∇V0 · ∇θ.



110 4.4. Higher-Dimensional Waves - Ray Methods

Consequently we can also rewrite the transport equation (4.4.8) as

2∂sV0 + λ
(
∇2θ

)
V0 = 0. (4.4.12)

Using the identity

∂s

(
J

λ

)
= J∇2θ, (4.4.13)

where J =

∣∣∣∣ ∂(x, y, z)

∂(s, α, β)

∣∣∣∣ is the Jacobian of the transformation x = X(s, α, β), we can rewrite

(4.4.12) as

2J∂sV0 + λ∂s

(
J

λ

)
V0 = 0

J∂s
(
V 2

0

)
+ λV 2

0 ∂s

(
J

λ

)
= 0(

J

λ

)
∂s
(
V 2

0

)
+ V 2

0 ∂s

(
J

λ

)
= 0

∂s

(
1

λ
JV 2

0

)
= 0,

and its general solution is

V0(x) = a0

√
λ(x)

J(x)
. (4.4.14)

Imposing the boundary condition V0(x0) = f(x0), we obtain

V0(x) = f(x0)

√
λ(x)J(x0)

λ(x0)J(x)
. (4.4.15)

This is true provided θ(0, α, β) = 0 in (4.4.11) since otherwise we will get an additional expo-
nential term from the WKB ansatz (4.4.5)

eiωθ(x0) = eiωθ(0,α,β).

We now prove the identity (4.4.13) in R2 but this easily extends to R3. The transformation
in R2 is x = X(s, α) and its Jacobian is

J =

∣∣∣∣∂(x, y)

∂(s, α)

∣∣∣∣ = ∂sx∂αy − ∂αx∂sy.

Using chain rule and the ray equation (4.4.9) we obtain

∂sJ = ∂s (∂sx) ∂αy + ∂sx∂s (∂αy)− ∂s (∂sy) ∂αx− ∂sy∂s (∂αx)

= ∂s (∂sx) ∂αy − ∂α (∂sx) ∂sy + ∂α (∂sy) ∂sx− ∂s (∂sy) ∂αx

= ∂αy
[
∂sx∂s + ∂sy∂y

]
(∂sx)− ∂sy

[
∂αx∂x + ∂αy∂y

]
(∂sx)

+ ∂sx
[
∂αx∂x + ∂αy∂y

]
(∂sy)− ∂αx

[
∂sx∂x + ∂sy∂y

]
(∂sy)
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=
[
∂αy∂sx− ∂sy∂αx

]
∂x (∂sx) +

[
∂αy∂sy∂y (∂sx)− ∂sy∂αy∂y (∂sx)

]
+
[
∂sx∂αy − ∂αx∂sy∂y

]
∂y (∂sy) +

[
∂sx∂αx∂x (∂sy)− ∂αx∂sx∂x (∂sy)

]
= J∂x (∂sx) + J∂y (∂sy)

= J∇ · (∂sx)

= J∇ · (λ∇θ) .

For any smooth function q(x),

∂s (qJ) = q∂sJ + J∂sq

= qJ∇ · (λ∇θ) + J∇q · ∂sx

= J
[
q∇ · (λ∇θ)

]
+ J

[
∇q · (λ∇θ)

]
= J∇ · (qλ∇θ) .

The identity (4.4.13) follows by choosing q = 1/λ.

4.4.5 Ray equation

We may now focus on solving the ray equation (4.4.9). To remove the θ dependence, let
X = (X1, X2, X3). Dividing (4.4.9) by λ and differentiating the resulting equation component-
wise yields

∂

∂s

[
1

λ

∂Xi

∂s

]
=

∂

∂s

(
∂θ(x)

∂xi

)
=

3∑
j=1

∂xi
∂s

∂

∂xj

(
∂θ(x)

∂xi

)
=

(
∂

∂xi
∇θ
)
·
(
∂X

∂s

)
= (∂xi∇θ) · (λ∇θ)

=
1

2
λ∂xi (∇θ · ∇θ)

=
1

2
λ∂xiµ

2.

In vector form, this equals
∂

∂s

(
1

λ

∂

∂s
X

)
= λµ∇µ. (4.4.16)

We require two boundary conditions as (4.4.16) is a second-order equation in s. Recall that
each ray starts on the initial surface S. Given any point x0 ∈ S, its ray satisfies

X|s=0 = x0. (4.4.17)

The second boundary condition is typically

∂X

∂s

∣∣∣∣
s=0

= λ0µ0n0, (4.4.18)

where n0 is the unit outward normal at x0, λ0 = λ(0, α, β) and µ0 = µ(0, α, β).
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We can also rewrite the ray equation (4.4.9) by taking the dot product of (4.4.9) against
∂sX:

∂X

∂s
· ∂X
∂s

= λ2∇θ · ∇θ = λ2µ2.

If ` be the arc length along a ray, then

` =

∫ s

0

‖∂sX‖ ds =

∫ s

0

λµ ds.

Hence, s equals the arc length along a ray if we choose λµ = 1. Another common choice is
λ = 1.

4.4.6 Summary for λ = 1/µ

From (4.4.16), choosing λµ = 1 amounts to solving

∂

∂s

(
µ
∂

∂s
X

)
= ∇µ(X) (4.4.19a)

X|s=0 = x0 ∈ S, ∂sX|s=0 = n0. (4.4.19b)

Once this is solved, the phase function becomes

θ(X) =

∫ s

0

µ(X) dσ (4.4.20)

and the amplitude is

V0(x) = f(x0)

√
µ(x0)J(x0)

µ(x)J(x)
. (4.4.21)

Finally, the WKB approximation for the outward propagating wave is

u(x, t) ∼ f(x0)

√
µ(x0)J(x0)

µ(x)J(x)
exp

[
iω

(
−t+

∫ s

0

µ(X(σ)) dσ

)]
, (4.4.22)

where s is the value for which the solution of (4.4.19) satisfies X(s) = x.

Example 4.4.2. For constant µ, the ray equation (4.4.19) becomes

∂2X

∂s2
= 0 =⇒ X(s) = x0 + sn0.

The phase function is

θ = µ0

∫ s

0

dσ = µ0s.

Thus, given a point x on the ray, s = n0 · (x− x0) the WKB approximation is

u(x, t) ∼ f(x0)

√
J(x0)

J(x)
exp [i (k · (x− x0)− ωt)] ,

where k = µ0ωn0 is the wave vector for the ray. In R2, when the boundary surface is the circle
of radius a, n0 is simply the position vector x− x0 and s is then the distance from the circle.
In polar coordinates (ρ, ϕ), the Jacobian is just ρ and

u(x, t) ∼ f(x0)

√
a

ρ
eiω(µ0(ρ−a)−t).
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4.4.7 Breakdown of the WKB solution

It is important to consider circumstances in which the solution (4.4.22) can go wrong:

1. It does not hold at turning points x of µ, i.e. µ(x) = 0. Nonetheless, this can be handled
analogously to the one-dimensional case in Section 4.2 using boundary layer method.

2. A more likely complication arises when J = 0. Points where this occurs are called caustics
and these arise when two or more rays intersect, which results in the breakdown of the
characteristic coordinates (s, α, β). If a ray passes through a caustic, one picks up an
additional factor in the WKB solution (4.4.22) of the form eimπ/2, where the integer m
depends on the rank of the Jacobian matrix at the caustic.

3. A less obvious breakdown occurs when X(s) = x has no solution. This happens with
shadow regions and it is resolved by introducing the idea of ray splitting.

4.5 Problems

1. Use the WKB method to find an approximation of the following problem on x ∈ [0, 1]:

εy′′ + 2y′ + 2y = 0, y(0) = 0, y(1) = 1.

Solution: We make a WKB ansatz of the form

y(x) ∼ eθ(x)/εα (y0(x) + εαy1(x) + . . . ) . (4.5.1)

Substituting (4.5.1) into the given differential equation yields

ε
[
ε−2αθ2

xy0 + ε−α
(
θxxy0 + 2θxy

′
0 + θ2

xy1

)
+ . . .

]
+ 2

[
ε−αθxy0 + y′0 + θxy1 + . . .

]
+ 2 [y0 + εαy1 + . . . ] = 0.

Balancing leading order terms of the first two terms we obtain α = 1 and the O(1/ε)
equation is the eikonal equation

θ2
x + 2θx = 0 = θx (θx + 2)

which has two general solutions:

θ(x) ≡ c1 or θ(x) = −2x+ c2,

where c1, c2 are arbitrary constants. The O(1) equation, after simplifying using the
eikonal equation, is the following:

θxxy0 + 2θxy
′
0 + 2y′0 + 2y0 = 0. (4.5.2)

Suppose θx = 0, then (4.5.2) reduces to 2y′0 + 2y0 = 0 and its general solution is

y0(x) = a0e
−x.
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Suppose θx = −2, then (4.5.2) reduces to −2y′0 + 2y0 = 0 and its general solution is

y0(x) = b0e
x.

Thus a first-term approximation of the general solution of the original problem is

y ∼ a0e
−x + b0e

xe−2x/ε ∼ a0e
−x + b0e

x−2x/ε,

where we absorb the constants c1, c2 into a0, b0 respectively. Imposing the boundary
conditions y0(0) = 0 and y0(1) = 1 results in two linear equations in terms of a0 and
b0: {

a0 + b0 = 0

a0e
−1 + b0e

1−2/ε = 1
=⇒ a0 = −b0, b0 =

e

e2−2/ε − 1

Hence, a first-term WKB approximation is

y ∼ b0

(
−e−x + ex−2x/ε

)
∼ −b0

(
e−x − ex−2x/ε

)
∼ e

1− e2−2/ε

(
e−x − ex−2x/ε

)
∼ 1

1− e2−2ε

(
e1−x − ex+1−2x/ε

)
.

2. Consider seismic waves propagating through the upper mantle of the Earth from a source
on the Earth’s surface. We want to use a WKB approximation in R3 to solve the equation

∇2v + ω2µ2(r)v = 0,

where µ has spherical symmetry. Take λ = 1/µ.

Figure 4.5: Rays representing waves propagating inside the earth from a source on the surface
of the earth.
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(a) Use the ray equation to show that the vector p = r × (µ∂sr) is independent of s.
Hence, show that ‖r‖µ sin(χ) is constant along a ray, where χ is the angle between
r and ∂sr.

Solution: With the choice λ = 1/µ, the ray equation (4.4.16) reduces to

∂

∂s

(
µ
∂

∂s
X

)
= ∇µ(X), with x = r = X(s, α, β).

Using the product rule for differentiating cross product we obtain

∂sp =
∂

∂s

(
r × µ ∂

∂s
r

)
=

∂

∂s
r × µ ∂

∂s
r + r × ∂

∂s

(
µ
∂

∂s
r

)
= µ

(
∂

∂s
r × ∂

∂s
r

)
+ r ×∇µ(r).

The first term vanishes because the cross product of any vector with itself is
zero and the second term vanishes since r and ∇µ(r) are parallel. Therefore
∂sp = 0 and so p is independent of s.

An immediate consequence of the previous result is that the vector p is constant
along a ray, i.e. p has constant magnitude κ > 0 along a ray. First, the
geometrical interpretation of the cross product gives the following

‖r‖‖∂sr‖ sin(χ) = ‖r × ∂sr‖,

where χ is the angle between the vectors r and ∂sr. Multiplying each side by
the positive scalar function µ we obtain

‖r‖µ‖∂sr‖ sin(χ) = ‖r × µ∂sr‖ = ‖p‖ = κ.

Using the ray equation and the eikonal equation,

‖∂sr‖2 = ∂sr∂sr = (λ∇θ) · (λ∇θ) = λ2µ2 = 1,

since we take λ = 1/µ. Hence,

κ = ‖r‖µ‖∂sr‖ sin(χ) = ‖r‖µ sin(χ) along a ray. (4.5.3)

(b) Part (a) implies that each ray lies in a plane containing the origin of the sphere. Let
(ρ, ϕ) be polar coordinates of this plane. It follows that for a polar curve ρ = ρ(ϕ),
the angle χ satisfies

sin(χ) =
ρ√

ρ2 + (∂ϕρ)2
. (4.5.4)
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Assuming ∂ϕρ 6= 0, show that

ϕ = ϕ0 + κ

∫ ρ

ρ0

dr

r
√
µ2r2 − κ2

,

where ρ0, ϕ0, κ are constants.

Solution: Given a ray, let (ρ, ϕ) be polar coodinates of the plane containing
such ray. Since this plane contains the origin of the sphere, we can identify ρ as
the magnitude of the radial (position) vector r and from (4.5.3) we know that

sin(χ) =
κ

‖r‖µ
=

κ

µρ
. (4.5.5)

Substituting (4.5.5) into (4.5.4) and rearranging we obtain

κ

ρµ
=

ρ√
ρ2 + (∂ϕρ)2√

ρ2 + (∂ϕρ)2 =
ρ2µ

κ

ρ2 + (∂ϕρ)2 =
ρ4µ2

κ2

(∂ϕρ)2 =
ρ4µ2

κ2
− ρ2

(∂ϕρ)2 =
ρ2

κ2

(
ρ2µ2 − κ2

)
∂ϕρ = ±ρ

κ

√
ρ2µ2 − κ2.

Assuming ∂ϕρ 6= 0, we can invert this to obtain ∂ρϕ. Therefore,

∂ρϕ = ± κ

ρ
√
ρ2µ2 − κ2

ϕ = ϕ0 ± κ
∫ ρ

ρ0

dr

r
√
µ2r2 − κ2

,

where (ϕ0, ρ0) satisfies κ = ±ρ0µ(ρ0) sin(ϕ0).

(c) Use the definition of arc length, show that for a polar curve

µds =

√
ρ2 + (∂ϕρ)2dϕ. (4.5.6)

Combining this result with part (b), show that the solution of the eikonal equation
is given by

θ =
1

κ

∫ ϕ

ϕ0

µ2ρ2 dϕ.
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Solution: First of all, we must distinguish the ray parameter s with the ar-
clength parameter ` of a ray. For a polar curve (ϕ, ρ(ϕ)), we have x = ρ(ϕ) cosϕ
and y = ρ(ϕ) sinϕ and so

d` =

√(
dx

dϕ

)2

+

(
dy

dϕ

)2

dϕ

=

√
(−ρ sinϕ+ ∂ϕρ cosϕ)2 + (ρ cosϕ+ ∂ϕρ sinϕ)2dϕ

=
√
ρ2
(
sin2 ϕ+ cos2 ϕ

)
+ (∂ϕρ)2 (cos2 ϕ+ sin2 ϕ

)
dϕ

=

√
ρ2 + (∂ϕρ)2dϕ.

Recall that the arclength ` along a ray satisfies

` =

∫ s

0

λµ ds.

It follows from the choice of λ = 1/µ that

d` = ds =

√
ρ2 + (∂ϕρ)2.

Since we take λ = 1/µ, the solution of the eikonal equation is

θ =

∫ s

0

λµ2 ds =

∫ s

0

µ ds

=

∫ ϕ

ϕ0

µ

√
ρ2 + (∂ϕρ)2 dϕ

=

∫ ϕ

ϕ0

µρ

sin(χ)
dϕ

[
From (4.5.4).

]
=

∫ ϕ

ϕ0

µρ
(µρ
κ

)
dϕ

[
From (4.5.5).

]
=

1

κ

∫ ϕ

ϕ0

µ2ρ2 dϕ,

as desired. Note: I did a dimensional analysis on the original expression (4.5.6)
given in the problem and found out that µ is dimensionless, which is clearly
false.
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Chapter 5

Method of Homogenization

5.1 Introductory Example

Consider the boundary value problem

d

dx

(
D
du

dx

)
= f(x), 0 < x < 1, (5.1.1)

with u(0) = a and u(1) = b. In many physical problems, D is known as the conductivity
tensor and we are interested in D = D(x, x/ε), where it includes a slow variation in x as well
as a fast variation over a length scale that is O(ε). A physical realisation of this is a material
having micro and macrostructures with spatial variation. For example, we might have

D(x, y) =
1

1 + αx+ βg(x) cos y
, (5.1.2)

with

α = 0.1, β = 0.1, ε = 0.01, g(x) = e4x(x−1).

Our main goal is to try to replace, if possible, D(x, x/ε) = D(x, y) with some effective
(averaged) D that is independent of ε. A naive guess would be to simply average over the fast
variation, i.e.

〈D〉∞ = lim
y→∞

1

y

∫ y

0

D(x, r) dr. (5.1.3)

For the given example (5.1.2), we have that

〈D〉∞ =
[
(1 + αx)2 − (βg(x))2

]−1/2
. (5.1.4)

It turns out that this is not a good approximation because the solution of (5.1.1) with 〈D〉∞
might be a bad approximation of the solution of (5.1.1).

Because of the two different length scales in (5.1.1), it is natural to invoke the method of
multiple scales, but with an important distinction. Here, we want to eliminate the fast length
scale y = x/ε, as opposed to the standard multiple scales where we keep both the slow and
normal scales. For the existence of solution of (5.1.1), we assume D(x, y) is smooth and satisfies

0 < Dm(x) ≤ D(x, y) ≤ DM(x) (5.1.5)
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120 5.1. Introductory Example

Figure 5.1: Rapidly varying coefficient D and its average. The red line depicts rapidly varying
D(x, x/ε) in (5.1.2) and the blue dotted line shows its effective mean D(x) = 1/(1 + αx).

for all x ∈ [0, 1] and y > 0, where Dm(x) and DM(x) are both continuous. With the fast scale
y = x/ε and the slow scale x, the derivative becomes

d

dx
−→ 1

ε
∂y + ∂x

and (5.1.1) becomes

(∂y + ε∂x)[D(x, y)(∂y + ε∂x)u] = ε2f(x). (5.1.6)

We assume a regular perturbation expansion of the form

u ∼ u0(x, y) + εu1(x, y) + ε2u2(x, y) + . . . ,

with u0, u1, u2, . . . smooth, bounded functions of y. The O(1) equation is

∂y[D(x, y)∂yu0] = 0,

and its general solution is

u0(x, y) = c1(x) + c0(x)

∫ y

y0

ds

D(x, s)
, (5.1.7)

where y0 is some fixed but arbitrary number. In order fo u0 to be bounded, we require c0 = 0,
since the associated integral in (5.1.7) is unbounded. Indeed, from the assumption (5.1.5), if
y > y0, then ∫ y

y0

ds

DM(x)
≤
∫ y

y0

ds

D(x, s)
,
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and it follows that
y − y0

DM(x)
≤
∫ y

y0

ds

D(x, s)
.

Since the left-hand side becomes infinite as y −→ ∞, so does the right-hand side. Therefore,
u0 = u0(x) = c1(x). At this point, it is worth noting that

y − y0

DM(x)
≤
∫ y

y0

ds

D(x, s)
≤ y − y0

Dm(x)
, (5.1.8)

i.e. the integral is unbounded but its growth is confined by linear functions in y as y −→∞.
The O(ε) equation is

∂y[D(x, y)∂yu1] = −∂xu0 · ∂yD. (5.1.9)

Integrating this with respect to y twice and using the fact that u0 = u0(x) yields

D(x, y)∂yu1 = b0(x)− ∂xu0D(x, y)

∂yu1 =
b0(x)

D(x, y)
− ∂xu0

u1(x, y) = b1(x)︸ ︷︷ ︸
1

+ b0(x)

∫ y

y0

ds

D(x, s)︸ ︷︷ ︸
2

− y∂xu0︸ ︷︷ ︸
3

. (5.1.10)

Observe that 2 and 3 increases linearly with y for large y, and analogous to removing
secular terms in multiple scales, we require that these two terms cancel each other so that u1

is bounded. This means that we must impose

lim
y→∞

1

y

[
b0(x)

∫ y

y0

ds

D(x, s)
− y∂xu0

]
= 0.

This can be rewritten as

∂xu0(x) = 〈D−1〉∞b0(x), where 〈D−1〉∞ = lim
y→∞

1

y

∫ y

y0

ds

D(x, s)
. (5.1.11)

In general multiple scales problem, it is enough to get information from O(ε) terms to
obtain a first-term approximation. However, for homogenization problems, we need to proceed
to O(ε2) equation to determine u0(x). The O(ε2) equation is

∂y[D(x, y)∂yu2] = f(x)− b′0 − ∂y[D(x, y)∂xu1],

and integrating twice with respect to y gives the general solution

u2(x, y) = d1(x) + d0(x)

∫ y

y0

ds

D(x, s)
−
∫ y

y0

∂xu1(x, s) ds+ (f − b′0)

∫ y

y0

s ds

D(x, s)
. (5.1.12)

The last integral is O(y2) for large y and cannot be cancelled by other terms in (5.1.12).
Therefore, we require b′0(x) = f(x). Finally, rearranging (5.1.11) and differentiating with
respect to x we obtain

∂x[D(x)∂xu0(x)] = b′0(x) = f(x), (5.1.13)
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where D(x) is the harmonic mean of D, defined as

D(x) = 〈D−1〉−1
∞ = lim

y→∞

y∫ y
y0

ds
D(x,s)

. (5.1.14)

We called (5.1.13) the homogenized differential equation with the homogenized, or ef-
fective, coefficient D.

Figure 5.2: Exact and averaged solution. The red line depicts the exact solution and the blue
line shows its homogenized solution.

Example 5.1.1. Given D(x, y) in (5.1.2), it follows that

〈D−1〉∞ = lim
y→∞

1

y

∫ y

y0

(
1 + αx+ βg(x) cos(s)

)
ds = 1 + αx. (5.1.15)

In particular, D = 1 for α = 0. For f(x) = 0, α = 0 and β 6= 0, the solution of (5.1.13), with
u0(0) = 0 and u0(1) = 1, is u0(x) = x. In Figure 5.2 we compare u0(x) with the exact solution
of (5.1.1)

u(x) =
x+ εβ sin(x/ε)

1 + εβ sin(1/ε)
.

5.2 Multi-dimensional Problem: Periodic Substructure

Given an open, connected, smooth region Ω ⊂ Rn, consider the inhomogeneous Dirichlet
problem

∇ · (D∇u) = f(x), x ∈ Ω, (5.2.1a)
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Figure 5.3: Fundamental domain with periodic substructure. On the fundamental domain,
function has a same set of values.

u = g(x), x ∈ ∂Ω. (5.2.1b)

The coefficient D = D(x,x/ε) is assumed to be positive and smooth, and because (5.2.1) is
harder to solve compared to (5.1.1), we also assume that D is periodic in the fast scale y = x/ε.
In other words, there is a period vector yp with positive entries such that

D(x,y + yp) = D(x,y) for all x,y. (5.2.2)

5.2.1 Periodicity of D(x,y)

Suppose
D = D(y) = y + cos(2y1 − 3y2).

One finds that yp = (π, 2π/3) and this means that we can determine D anywhere in R2 if we
know its values in the rectangle (y1, y2) ∈ [α0, α0 +π]× [β0, β0 + 2π/3] for arbitrary α0, β0 ∈ R.
This structure motivates the definition of a cell (or fundamental domain), Ωp. Mathematically,
given yp = (p1, p2), Ωp is the rectangle

Ωp = [α0, α0 + p1]× [β0, β0 + p2],

where α0, β0 are given arbitrary constants that must be consistent with Ω. It is possible for
the period vector yp to depend on the slow variable x. For example, consider

D(x,y) = 6 + cos (y1e
x2 + 4y2) .

One finds that yp = (2πex2 , π/2).
An important consequence of periodicity is values of a function on the boundary of the

fundamental domain is also periodic. Suppose yL and yR are points on the left-hand and right-
hand boundary of the fundamental domain respectively. For any C2 periodic functions w, we
have 

w(yL) = w(yR)

∇yw(yL) = ∇yw(yR)

∂yi∂yjw(yL) = ∂yi∂yjw(yR)

(5.2.3)

These conditions must hold at upper and lower boundary as well.
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5.2.2 Homogenization procedure

Setting y = x/ε, the derivative becomes

∇ −→ ∇x +
1

ε
∇y.

Substituting this into (5.2.1) and multiplying each side by ε2 yields

(∇y + ε∇x) [D(x,y)(∇y + ε∇x)u(x,y)] = ε2f(x). (5.2.4)

We introduce an asymptotic expansion of the form

u ∼ u0(x,y) + εu1(x,y) + ε2u2(x,y) + . . .

and we assume that u0, u1, u2, . . . are periodic in y with period yp due to the periodicity
assumption on D.

The O(1) equation is
∇y(D∇yu0) = 0,

and the general solution of this, which is bounded, is u0 = u0(x). If D were constant, then
it follows from Liouville’s theorem that bounded solutions of Laplace’s equation over R2 are
constants. One can argue similarly in the case where D is not constant. The O(ε) equation is

∇y · (D∇yu1) = −(∇yD) · (∇xu0). (5.2.5)

Because u1 is periodic in y, it suffices to solve (5.2.5) in a cell Ωp and then simply extend the
solution using periodicity. Observe that (5.2.5) is linear with respect to y and u0 does not
depend on y. Thus the general solution of (5.2.5) follows from superposition principle

u1(x,y) = a · ∇xu0 + c(x), (5.2.6)

with a = a(x,y) periodic in y, satisfying

∇y · (D∇yai) = −∂yiD for y ∈ Ωp. (5.2.7)

The O(ε2) eqution is

∇y · [D(∇yu2 +∇xu1)] +∇x · [D(∇yu1 +∇xu0)] = f(x). (5.2.8)

To derive the homogenized equation for u0, we introduce the cell average of a function v(x,y)
over Ωp:

〈v〉p(x) =
1

|Ωp|

∫
Ωp

v(x,y) dVy.

Averaging the first term of (5.2.8) and applying the divergence theorem gives〈
∇y · [D(∇yu2 +∇xu1)]

〉
p

=
1

|Ωp|

∫
Ωp

∇y · [D(∇yu2 +∇xu1)] dVy

=
1

|Ωp|

∫
∂Ωp

Dn · (∇yu2 +∇xu1) dSy

= 0
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since u1, u2 are periodic over the cell Ωp. Next, using (5.2.6) we have

〈D∂yiu1〉p = 〈D∂yi (a · ∇xu0)〉p
= 〈D∂yia〉p · ∇xu0.

Similarly,

〈D∂xiu0〉p = 〈D〉p∂xiu0 =⇒
〈
∇x · (D∇xu0)

〉
p

= ∇x ·
(
〈D〉p∇xu0

)
Combining everything, the average of (5.2.8) is

∇x ·
[
〈D∇ya〉p · ∇xu0

]
+∇x ·

[
〈D〉p∇xu0

]
= f(x).

We can rewrite the homogenized problem in a more compact fashion:

∇x ·
[
D∇xu0

]
= f(x) for x ∈ Ω, (5.2.9a)

u0 = g(x) for x ∈ ∂Ω, (5.2.9b)

D = 〈D∇ya〉p + 〈D〉pI. (5.2.9c)

In R2, the homogenized coefficients are

D =

[
〈D〉p + 〈D∂y1a1〉p 〈D∂y1a2〉p
〈D∂y2a1〉p 〈D〉p + 〈D∂y2a2〉p

]
(5.2.10)

and the functions ai are smooth periodic solutions of the cell problem

∇y · (D∇yai) = −∂yiD for y ∈ Ωp. (5.2.11)

Example 5.2.1. Consider the cell Ωp = [0, a] × [0, b] in R2. To determined the homogenized
coefficients in (5.2.10), it is necessary to solve the cell problem (5.2.11). Consider a “separable”
coefficient function D:

D(x,y) = D0(x1, x2)eα(y1)eβ(y2),

where α(y1) and β(y2) are periodic with period a and b respectively. The cell equations for
a1, a2 are

∂y1(D∂y1a1) + ∂y2(D∂y2a1) = −∂y1D
∂y1(D∂y1a2) + ∂y2(D∂y2a2) = −∂y2D.

Taking a1 = a1(y1) and a2 = a2(y2), it follows that

eα(y1)∂y1a1 = κ1 − eα(y1)

eβ(y2)∂y2a2 = κ2 − eβ(y2)

and

a1(y1) = −y1 + κ1

∫ y1

0

e−α(s) ds
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a2(y2) = −y2 + κ2

∫ y2

0

e−β(s) ds.

From the periodicity of a1 and a2, i.e.

a1(0) = a1(a), a2(0) = a2(b),

one finds that

κ1 = a

(∫ a

0

e−α(s) ds

)−1

, κ2 = b

(∫ b

0

e−β(s) ds

)−1

.

Now, since ∂y2a1 = ∂y1a2 = 0, it follows from (5.2.10) that D12 = D21 = 0. Moreover,

〈D∂y1a1〉p =
1

ab

∫ a

0

∫ b

0

D0(x)eα(y1)+β(y2)
(
− 1 + κ1e

−α(y1)
)
dy1 dy2

= − 1

ab

∫ a

0

∫ b

0

D0(x)eα(y1)+β(y2) dy1 dy2 +
1

ab

∫ a

0

∫ b

0

D0(x)κ1e
β(y2) dy1 dy2

= −〈D〉p +D0(x)κ1

(
1

b

∫ b

0

eβ(s) ds

)
= −〈D〉p +D0(x)

(
κ1

κ2

)
,

and similarly

〈D∂y2a2〉p =
1

ab

∫ a

0

∫ b

0

D0(x)eα(y1)+β(y2)
(
− 1 + κ2e

−β(y2)
)
dy1 dy2

= − 1

ab

∫ a

0

∫ b

0

D0(x)eα(y1)+β(y2) dy1 dy2 +
1

ab

∫ a

0

∫ b

0

D0(x)κ2e
α(y1) dy1 dy2

= −〈D〉p +D0(x)κ2

(
1

a

∫ a

0

eα(s) ds

)
= −〈D〉p +D0(x)

(
κ2

κ1

)
.

Consequently, the homogenized differential equation (5.2.9) for u0 is

∂x1(D1∂x1u0) + ∂x2(D2∂x2u0) = 0,

where Di(x) = λiD0(x), with

λ1 =
κ1

κ2

, λ2 =
κ2

κ1

.

Interestingly, for D1 we get the harmonic mean of eα(y1) multiplied by the arithmetic mean of
eβ(y2), and vice versa for D2.

5.3 Problem

1. Consider the equation

∂x (D∂xu) + g(u) = f(x, x/ε), 0 < x < 1, (5.3.1)
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with u = 0 when x = 0, 1. Assume D = D(x, x/ε). Use the method of multiple-scales to
show that the leading order homogenised equation is

∂x
(
D∂xu0

)
+ g(u0) = 〈f〉∞,

where D is the harmonic mean of D and

〈f〉∞ = lim
y→∞

(
1

y

∫ y

y0

f(x, s) ds

)
.

We assume the coefficient D(x, y) is smooth and satisfies

0 < Dm(x) ≤ D(x, y) ≤ DM(x),

for some continuous functions Dm, DM in [0, 1]. We introduce y = x/ε and designate
the slow scale simply as x. The derivative transforms into

d

dx
−→ ∂

∂x
+

1

ε

∂

∂y
= ∂x +

1

ε
∂y,

and (5.3.1) becomes

(∂y + ε∂x)
[
D(x, y) (∂y + ε∂x)u

]
+ ε2g(u) = ε2f(x, y). (5.3.2)

We take a regular asymptotic expansion

u ∼ u0(x, y) + εu1(x, y) + ε2u2(x, y) + . . . , (5.3.3)

where we assume that un, n = 0, 1, . . . are bounded functions of y. We now substitute
(5.3.3) into (5.3.2) and collect terms of same order.

The O(1) equation is

∂y

[
D(x, y)∂yu0

]
= 0,

and its general solution is

u0(x, y) = c1(x) + c0(x)

∫ y

y0

ds

D(x, s)
,

with y0 fixed. We deduce from the lecture that c0(x) must be zero and consequently
u0 is a function of x only, i.e. u0(x, y) = u0(x).

The O(ε) equation is

∂y

[
D(x, y)∂yu1

]
= −∂xu0∂yD,

and its general solution is

u1(x, y) = b1(x) + b0(x)

∫ y

y0

ds

D(x, s)
− y∂xu0.
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We deduce from the lecture that the following equation must be true to prevent u1

from blowing up:
∂xu0 = 〈D−1〉∞b0(x), (5.3.4)

where 〈D−1〉∞ = (D)−1.

The O(ε2) equation is

∂y

[
D(x, y)∂yu2

]
= f(x, y)− ∂xb0 − g(u0)− ∂y

(
D∂xu1

)
,

and solving this yields

D(x, y)∂yu2 = a0(x) +

∫ y

y0

f(x, s) ds−
[
∂xb0 + g(u0)

]
y −D∂xu1

∂yu2 =
a0(x)

D(x, y)
− ∂xu1 −

[
∂xb0 + g(u0)

]
y

D(x, y)
+

1

D(x, y)

∫ y

y0

f(x, s) ds

u2(x, y) = d1(x) + d0(x)

∫ y

y0

ds

D(x, s)
−
∫ y

y0

∂xu1(x, s) ds

+

∫ y

y0

{
1

D(x, τ)

(
−
[
∂xb0 + g(u0)

]
τ +

∫ τ

y0

f(x, s) ds

)}
dτ

Since the last integral is O(y2) for large y and there are no other terms in the
expression of u2(x, y) that can cancel this growth, it is necessary to impose

lim
y→∞

1

y2

∫ y

y0

{
1

D(x, τ)

(
−
[
∂xb0 + g(u0)

]
τ +

∫ τ

y0

f(x, s) ds

)}
dτ = 0,

A slightly weaker requirement is

lim
τ→∞

1

τ

(∫ τ

y0

f(x, s) ds−
[
∂xb0 + g(u0)

]
τ

)
= 0,

or equivalently

∂xb0 + g(u0) = lim
τ→∞

1

τ

∫ τ

y0

f(x, s) ds = 〈f〉∞. (5.3.5)

Differentiating (5.3.4) and using the relation (5.3.5), it follows that

D∂xu0 = b0 =⇒ ∂x

(
D∂xu0

)
= ∂xb0 = 〈f〉∞ − g(u0),

and the leading order homogenised equation follows.
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